

Mathématiques 1

2016 Sées

CONCOURS CENTRALE • SUPÉLEC

4 heures

Calculatrices autorisées

On utilise la fonction Gamma d'Euler Γ (partie I) pour calculer, en partie II, une intégrale dépendant d'un paramètre. En partie III, en liaison avec des variables aléatoires suivant une loi de Poisson, on détermine l'équivalent, quand $n \to +\infty$, de sommes dépendant d'un paramètre entier n. Les trois parties sont largement indépendantes.

I Autour de la fonction Gamma d'Euler

Pour $x\in\mathbb{R},$ on pose, lorsque cela a un sens, $\Gamma(x)=\int\limits_0^{+\infty}t^{x-1}\mathrm{e}^{-t}\,\mathrm{d}t.$

I.A -

I.A.1) Quel est le domaine de définition \mathcal{D} de la fonction Γ ?

I.A.2) Pour tout $x \in \mathcal{D}$, exprimer $\Gamma(x+1)$ en fonction de x et de $\Gamma(x)$.

En déduire, pour tout $x \in \mathcal{D}$ et tout $n \in \mathbb{N}^*$, une expression de $\Gamma(x+n)$ en fonction de x, n et $\Gamma(x)$, ainsi que la valeur de $\Gamma(n)$ pour tout $n \ge 1$.

I.A.3) Montrer l'existence des deux intégrales $\int_{0}^{+\infty} e^{-t^2} dt$ et $\int_{0}^{+\infty} e^{-t^4} dt$ et les exprimer à l'aide de Γ.

I.B –

I.B.1) Soit a et b deux réels tels que 0 < a < b. Montrer que, pour tout t > 0 et tout $x \in [a, b]$,

$$t^x \leq \max(t^a, t^b) \leq t^a + t^b$$

I.B.2) Montrer que Γ est de classe \mathcal{C}^{∞} sur \mathcal{D} .

Soit $k \in \mathbb{N}^*$ et $x \in \mathcal{D}$. Exprimer $\Gamma^{(k)}(x)$, dérivée k-ième de Γ au point x, sous forme d'une intégrale.

I.C -

I.C.1) Montrer que Γ' s'annule en un unique réel ξ dont on déterminera la partie entière.

I.C.2) En déduire les variations de Γ sur \mathcal{D} . Préciser en particulier les limites de Γ en 0 et en $+\infty$. Préciser également les limites de Γ' en 0 et en $+\infty$. Esquisser le graphe de Γ .

II Une transformée de Fourier

Pour $x \in \mathbb{R}$, on pose $F(x) = \int_{0}^{+\infty} e^{-t} t^{-3/4} e^{itx} dt$, où i désigne le nombre complexe de module 1 et d'argument $\pi/2$.

II.A – Montrer que la fonction $F: \mathbb{R} \to \mathbb{C}$ est définie et de classe \mathcal{C}^{∞} sur \mathbb{R} .

Soit k un entier naturel non nul et soit x un réel. Donner une expression intégrale de $F^{(k)}(x)$, dérivée k-ième de F en x. Préciser F(0).

II.B –

II.B.1) Montrer qu'au voisinage de x = 0, la fonction F peut s'écrire sous la forme

$$F(x) = \sum_{n=0}^{+\infty} c_n \frac{(ix)^n}{n!}$$
 (S)

où c_n est la valeur de Gamma en un point à préciser. On exprimera c_n en fonction de n et de c_0 .

Quel est le rayon de convergence de la série entière qui apparaît au second membre de (S)?

II.B.2) On admet que $\Gamma(x) \underset{x \to +\infty}{\sim} \sqrt{2\pi} \, x^{(x-1/2)} \, e^{-x}$.

Étudier si la série du second membre de (S) converge absolument lorsque |x|=R.

II.B.3) Soit R(x) la partie réelle et I(x) la partie imaginaire de F(x).

Déterminer, au voisinage de 0, le développement limité de R(x) à l'ordre 3 et de I(x) à l'ordre 4.

II.C -

II.C.1) Prouver que F vérifie sur \mathbb{R} une équation différentielle de la forme F' + AF = 0, où A est une fonction à préciser.

II.C.2) En déduire une expression de F(x).

On pourra commencer par dériver la fonction $x\mapsto -\frac{1}{8}\ln(1+x^2)+\frac{\mathrm{i}}{4}\arctan x$

III Autour de la loi de Poisson

Dans cette partie, λ désigne un réel strictement positif.

On rappelle qu'une variable aléatoire X, à valeurs dans \mathbb{N} , suit la loi de Poisson $\mathcal{P}(\lambda)$ de paramètre λ si, pour tout $n \in \mathbb{N}$:

$$P(X = n) = \frac{\lambda^n}{n!} e^{-\lambda}$$

Pour tout sous-ensemble A de $\mathbb{R},$ $\mathbf{P}(X \in A)$ désigne la probabilité de l'événement $X^{-1}(A)$.

On note $G_X(t) = \mathbf{E}(t^X) = \sum_{k=0}^{\infty} \mathbf{P}(X=k)t^k$ (série génératrice de la variable aléatoire X).

III.A – Soit X une variable aléatoire qui suit la loi de Poisson $\mathcal{P}(\lambda)$.

III.A.1) Déterminer $G_X(t)$.

III.A.2) Calculer l'espérance E(X), la variance V(X) et l'écart type de X.

III.A.3) Soit μ un réel strictement positif. Soit Y une variable aléatoire suivant la loi de Poisson $\mathcal{P}(\mu)$ et telle que X et Y soient indépendantes. Déterminer la loi de X + Y.

III.B – Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires mutuellement indépendantes, de loi $\mathcal{P}(\lambda)$. On rappelle que, quels que soient les entiers $1\leqslant i_1< i_2< \cdots < i_k$ et les intervalles $I_1,\,I_2,...I_k$ de $\mathbb R$

$$\mathbf{P}(X_{i_1} \in I_1,\, X_{i_2} \in I_2,\, ...,\, X_{i_k} \in I_k) = \prod_{i=1}^{j=k} \mathbf{P}(X_{i_j} \in I_j)$$

III.B.1) Pour tout entier $n\geqslant 1$, déterminer la loi de $S_n=X_1+X_2+\cdots+X_n.$

III.B.2) Déterminer l'espérance et l'écart type des variables aléatoires S_n et $T_n = \frac{S_n - n\lambda}{\sqrt{n\lambda}}$.

III.B.3) Montrer que, pour tout $\varepsilon > 0$, il existe un réel $c(\varepsilon)$ tel que, si $c \geqslant c(\varepsilon)$ et $n \in \mathbb{N}^*$, on a $P(|T_n| \geqslant c) \leqslant \varepsilon$.

III.C – Dans cette sous-partie, on fixe deux réels a et b tels que a < b.

Pour tout entier $n \ge 1$ tel que $a + \sqrt{n\lambda} > 0$, on pose

$$I_n = \{k \in \mathbb{N} | \ n\lambda + a\sqrt{n\lambda} \leqslant k \leqslant n\lambda + b\sqrt{n\lambda} \}$$

Pour $k \in \mathbb{Z}$, on pose $x_{k,n} = \frac{k - n\lambda}{\sqrt{n\lambda}}$.

On considère enfin la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = e^{-\frac{1}{2}x^2}$ pour tout $x \in \mathbb{R}$.

III.C.1) Montrer qu'il existe un réel M > 0 tel que f soit une fonction M-lipschitzienne.

III.C.2)

 $a) \ \ \text{Montrer que, si} \ x, \ h \in \mathbb{R} \ \text{et} \ h > 0, \ \text{alors} \ |hf(x) - \int\limits_{x}^{x+h} f(t) \, \mathrm{d}t| \leqslant M \frac{h^2}{2}.$

b) En déduire, lorsque I_n est non vide, une majoration de

$$\Big|\frac{1}{\sqrt{n\lambda}}\sum_{k\in I_n}f(x_{k,n})-\int\limits_{x_{p,n}}^{x_{q+1,n}}\!\!f(t)\,\mathrm{d}t\Big|$$

où p est le plus petit élément de ${\cal I}_n$ et q est le plus grand.

c) Montrer que

$$\lim_{n \to +\infty} \frac{1}{\sqrt{n\lambda}} \sum_{k \in I_n} f(x_{k,n}) = \int_a^b \, f(x) \, \mathrm{d}x$$

III.C.3) Pour tout $k \in I_n$, on note $y_{k,n} = \left(1 - \frac{x_{k,n}}{k} \sqrt{n\lambda}\right)^k \exp(x_{k,n} \sqrt{n\lambda})$.

Soit $\varepsilon > 0$. Démontrer l'existence d'un entier $N(\varepsilon)$ tel que, pour tout $n \geqslant N(\varepsilon)$ et tout $k \in I_n$, les inégalités suivantes soient satisfaites :

$$a) \ \frac{1-\varepsilon}{\sqrt{2\pi}} \frac{1}{\sqrt{n\lambda}} y_{k,n} \leqslant \mathrm{e}^{-n\lambda} \frac{(n\lambda)^k}{k!} \leqslant \frac{1+\varepsilon}{\sqrt{2\pi}} \frac{1}{\sqrt{n\lambda}} y_{k,n} \ ;$$

On utilisera la formule de Stirling $n! \underset{n \to +\infty}{\sim} \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

$$b) \ (1-\varepsilon)f(x_{k,n}) \leqslant y_{k,n} \leqslant (1+\varepsilon)f(x_{k,n}).$$

III.C.4) Exprimer, sous forme d'intégrale, $\lim_{n\to+\infty} \sum_{k\in I_n} \frac{(n\lambda)^k}{k!} e^{-\lambda}$.

III.C.5) Comparer $P(a \leqslant T_n \leqslant b)$ et $\sum_{k \in I_n} P(S_n = k)$, où S_n et T_n sont définies en III.B.

III.C.6) Déterminer les limites, quand $n \to +\infty$, de

$$\mathbf{P}(T_n\geqslant a), \qquad \mathbf{P}(T_n=a), \qquad \mathbf{P}(T_n>a) \qquad \text{et} \qquad \mathbf{P}(T_n\leqslant b)$$

III.D –

III.D.1) Déduire de la question III.C.6) la valeur de $\int_{-\infty}^{+\infty} f(x) dx$.

III.D.2) Déterminer un équivalent, lorsque $n \to +\infty$, de

$$A_n = \sum_{k=0}^{\lfloor n\lambda \rfloor} \frac{(n\lambda)^k}{k!} \qquad \text{ et } \qquad B_n = \sum_{|n\lambda|}^{+\infty} \frac{(n\lambda)^k}{k!}$$

où |t| désigne la partie entière du réel t.

On interprétera $\mathrm{e}^{-n\lambda}A_n$ comme la probabilité d'un événement lié à S_n et donc à T_n .

III.D.3) Pour
$$\lambda \neq 1$$
, on note $C_n = \sum_{k=0}^n \frac{(n\lambda)^k}{k!}$ et $D_n = \sum_{k=n+1}^{+\infty} \frac{(n\lambda)^k}{k!}$.

Déterminer $\lim_{n \to +\infty} e^{-n\lambda} C_n$ si $\lambda < 1$ et $\lim_{n \to +\infty} e^{-n\lambda} D_n$ si $\lambda > 1$.

III.E – On suppose $\lambda < 1$.

III.E.1) Déterminer
$$\lim_{n\to+\infty} \left((n\lambda)^{-n} \int_0^{n\lambda} (n\lambda-t)^n e^t dt \right)$$
.

III.E.2) En utilisant la formule de Taylor avec reste intégral, en déduire un équivalent de D_n quand $n \to +\infty$.

 $\pmb{III.F}$ – Si $\lambda>1,$ déterminer un équivalent de C_n lorsque $n\to+\infty.$

Considérer l'intégrale $\frac{1}{n!} \int_{-\infty}^{0} (r-t)^n e^t dt$ et choisir convenablement le réel r.

 \bullet \bullet FIN \bullet \bullet