

Mathématiques 2

CONCOURS CENTRALE • SUPÉLEC

4 heures

Calculatrices autorisées

Le problème étudie quelques propriétés de variables aléatoires réelles finies de la forme $\sum_{k=1}^{n} a_k X_k$, où les a_k sont des réels et les X_k sont des variables aléatoires mutuellement indépendantes à valeurs dans $\{1, -1\}$ La première partie établit des résultats sur des intégrales, utilisés dans les parties suivantes.

À partir de la deuxième partie, on suppose donnée une suite $(X_n)_{n\in\mathbb{N}^*}$ de variables aléatoires mutuellement indépendantes définies sur un espace probabilisé (Ω,\mathcal{A},P) , à valeurs dans $\{1,-1\}$ et vérifiant

$$\forall k \in \mathbb{N}^*, \quad P(X_k = 1) = P(X_k = -1) = \frac{1}{2}$$

I Suites et intégrales

I.A - Étude d'une intégrale à paramètre

Pour $x \in \mathbb{R}^+$, on pose

$$f(x) = \int_{0}^{\infty} \frac{1 - \cos t}{t^2} e^{-xt} dt$$

- **I.A.1)** Montrer que f est définie et continue sur $[0, +\infty[$ et de classe C^2 sur $]0, +\infty[$.
- **I.A.2)** Déterminer les limites de f et f' en $+\infty$.
- **I.A.3)** Exprimer f'' sur $]0, +\infty[$ à l'aide de fonctions usuelles et en déduire que

$$\forall x>0, \quad f'(x)=\ln(x)-\frac{1}{2}\ln(x^2+1)$$

I.A.4) Montrer

$$\left\{ \begin{aligned} \forall x > 0, \quad f(x) = x \ln(x) - \frac{1}{2} x \ln(x^2 + 1) - \arctan(x) + \frac{\pi}{2} \\ f(0) = \frac{\pi}{2} \end{aligned} \right.$$

I.A.5) Montrer

$$\forall s \in \mathbb{R}, \quad |s| = \frac{2}{\pi} \int_{0}^{\infty} \frac{1 - \cos(st)}{t^2} dt$$

I.B - Étude d'une suite d'intégrales

Dans cette section, on étudie la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par

$$\forall n \in \mathbb{N}^*, \quad u_n = \int_0^\infty \frac{1 - (\cos t)^n}{t^2} dt$$

- **I.B.1)** Justifier l'existence de la suite $(u_n)_{n\in\mathbb{N}^*}$ et préciser la monotonie de la sous-suite $(u_{2n})_{n\in\mathbb{N}^*}$.
- **I.B.2**) Montrer que $u_1 = u_2 = \frac{\pi}{2}$.
- I.C Calcul d'un équivalent de u_n
- I.C.1) Montrer que

$$\forall n \in \mathbb{N}^*, \quad u_n = \frac{\sqrt{n}}{2\sqrt{2}} \, v_n \qquad \text{avec} \qquad v_n = \int\limits_0^\infty \frac{1 - \left(\cos\left(\sqrt{2u/n}\right)\right)^n}{u\sqrt{u}} \, \mathrm{d}u$$

$$\forall (n,u) \in \mathbb{N}^* \times]0,1], \quad \left|1 - \left(\cos\left(\sqrt{2u/n}\right)\right)^n\right| \leqslant u$$

I.C.3) Montrer que la suite $(v_n)_{n\in\mathbb{N}^*}$ admet une limite finie l vérifiant

$$l = \int_{0}^{\infty} \frac{1 - e^{-u}}{u\sqrt{u}} \, \mathrm{d}u$$

I.C.4) On admet la relation
$$\int_{0}^{\infty} \frac{e^{-u}}{\sqrt{u}} du = \sqrt{\pi}.$$

Conclure que $u_n \sim \sqrt{\frac{n\pi}{2}}$.

II Autour du pile ou face

Dans cette partie, comme il est indiqué dans le préambule, on considère une suite $(X_n)_{n\in\mathbb{N}^*}$ de variables aléatoires mutuellement indépendantes, à valeurs dans $\{1,-1\}$ et telles que, pour tout $k\in\mathbb{N}^*$,

$$P(X_k = 1) = P(X_k = -1) = \frac{1}{2}$$

Pour tout $n \in \mathbb{N}^*$, on pose $S_n = X_1 + \dots + X_n$.

L'espérance d'une variable aléatoire réelle finie Z est notée E(Z) et sa variance V(Z).

 $II.A - \acute{E}tude de E(|S_n|)$

II.A.1) Déterminer l'espérance et la variance de S_n .

II.A.2) Soit S et T deux variables aléatoires réelles finies indépendantes définies sur (Ω, \mathcal{A}, P) . On suppose que T et -T ont même loi.

Montrer que $E(\cos(S+T)) = E(\cos(S))E(\cos(T))$.

II.A.3) On considère la fonction φ_n de $\mathbb R$ dans $\mathbb R$ telle que $\varphi_n(t) = E(\cos(S_n t))$ pour tout réel t.

Montrer que $\varphi_n(t)=(\cos t)^n$ pour tout entier $n\in\mathbb{N}^*$ et tout réel t.

II.A.4) Montrer, pour tout $n \in \mathbb{N}^*$, $E(|S_n|) = \frac{2}{\pi}u_n$.

On utilisera l'expression intégrale de la valeur absolue obtenue à la question I.A.5.

II.A.5) Déduire de la question précédente que, pour tout $n \in \mathbb{N}$, $u_{2n+1} = u_{2n+2}$.

$$II.B$$
 – Étude de $\frac{S_n}{n}$

On se propose de démontrer que la suite $\left(\frac{S_n}{n}\right)_{n\in\mathbb{N}^*}$ converge presque sûrement vers 0, c'est-à-dire qu'il existe un événement négligeable $\mathcal{Z}\in\mathcal{A}$ tel que

$$\forall \omega \in \Omega \smallsetminus \mathcal{Z}, \quad \frac{S_n(\omega)}{n} \xrightarrow[n \to \infty]{} 0$$

Pour tout $n \in \mathbb{N}^*$, on pose

2016-02-09 08:17:29

$$U_n = \left(\frac{S_n}{n}\right)^4 \qquad \text{et} \qquad \mathcal{Z}_n = \left\{\omega \in \Omega, \ \exists k \geqslant n, \ U_k(\omega) \geqslant \frac{1}{\sqrt{k}}\right\}$$

II.B.1) Montrer que $E(S_n^4) = 3n^2 - 2n$ pour tout $n \in \mathbb{N}^*$.

II.B.2) Montrer que, pour tout
$$n \in \mathbb{N}^*$$
, $P\left(U_n \geqslant \frac{1}{\sqrt{n}}\right) \leqslant \frac{3}{n^{3/2}}$.

II.B.3) Montrer que $\mathcal{Z}_n \in \mathcal{A}$ pour tout $n \in \mathbb{N}^*$ et que $\lim_{n \to \infty} P(\mathcal{Z}_n) = 0$.

II.B.4) En considérant
$$\mathcal{Z} = \bigcap_{n \in \mathbb{N}^*} \mathcal{Z}_n$$
, montrer que $\left(\frac{S_n}{n}\right)$ converge presque sûrement vers 0.

III D'autres sommes aléatoires

On conserve la suite $(X_n)_{n\in\mathbb{N}^*}$ de la partie précédente et on considère de plus une suite $(a_n)_{n\in\mathbb{N}^*}$ de réels positifs ou nuls. Pour tout $n\in\mathbb{N}^*$, on pose $T_n=\sum_{k=1}^n a_k X_k$.

III.A - Étude de $E(|T_n|)$

III.A.1) Montrer que la suite $\left(E(|T_n|)\right)_{n\in\mathbb{N}^*}$ est croissante.

III.A.2) Montrer que si la série $\sum a_n^2$ est convergente, alors la suite $\big(E(|T_n|)\big)_{n\in\mathbb{N}^*}$ est convergente.

III.A.3) On suppose $a_1\geqslant a_2+\cdots+a_n$. Montrer $E(|T_n|)=E(|T_1|)=a_1$.

III.B - Application à une suite d'intégrales

Pour $n \in \mathbb{N}^*$, soit

$$J_n = \int\limits_0^\infty \frac{1-\cos(t)\cos\left(\frac{t}{3}\right)\cdots\cos\left(\frac{t}{2n-1}\right)}{t^2}\,\mathrm{d}t$$

III.B.1) Montrer que $(J_n)_{n\in\mathbb{N}^*}$ est une suite bien définie et qu'elle est croissante et convergente.

On posera $a_k=\frac{1}{2k-1}$ et on exprimera l'espérance de $|T_n|$ avec la méthode de la question II.A.4.

III.B.2) Montrer que $J_n = \frac{\pi}{2}$ pour $1 \leqslant n \leqslant 7$ et que $(J_n)_{n \geqslant 7}$ est strictement croissante.

 \bullet \bullet FIN \bullet \bullet