A 2015 MATH. II PSI

ÉCOLE DES PONTS PARISTECH, SUPAÉRO (ISAE), ENSTA PARISTECH, TÉLÉCOM PARISTECH, MINES PARISTECH, MINES DE SAINT-ÉTIENNE, MINES DE NANCY, TÉLÉCOM BRETAGNE, ENSAE PARISTECH (FILIÈRE MP), ÉCOLE POLYTECHNIQUE (FILIÈRE TSI).

SECONDE ÉPREUVE DE MATHÉMATIQUES

Filière PSI

(Durée de l'épreuve : 3 heures) L'usage d'ordinateur ou de calculatrice est interdit.

Sujet mis à la disposition des concours : Cycle international, ENSTIM, TELECOM INT, TPE-EIVP,

Les candidats sont priés de mentionner de façon apparente sur la première page de la copie :

MATHÉMATIQUES II - PSI.

L'énoncé de cette épreuve comporte 5 pages de texte.

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Matrices symplectiques

Notations

Dans tout le problème n désigne un entier naturel non nul : $n \in \mathbb{N}^*$.

— Dans $\mathcal{E}_n = \mathcal{M}_{n,1}(\mathbf{R})$ espace vectoriel réel de dimension n, on utilisera le produit scalaire canonique défini par :

$$\forall U, V \in \mathcal{E}_n, \qquad (U|V) = {}^tUV.$$

- On notera $\mathcal{M}_n = \mathcal{M}_n(\mathbf{R})$, l'espace vectoriel des matrices carrées de taille n à coefficients réels.
- Pour $A \in \mathcal{M}_n$, on notera ker A, le noyau de A vu comme endomorphisme de \mathcal{E}_n .
- Dans \mathcal{M}_n , on notera 0_n la matrice nulle et I_n la matrice unité. Le déterminant est noté det.
- $\mathcal{G}_n = \mathcal{G}L_n(\mathbf{R}) = \{M \in \mathcal{M}_n, \det(M) \neq 0\}$ désigne le groupe linéaire des matrices inversibles de \mathcal{M}_n .
- $\mathcal{O}_n = \{M \in \mathcal{M}_n, \ {}^t M M = I_n\}$ désigne le groupe orthogonal d'indice n, formé des matrices orthogonales de \mathcal{M}_n .
- On sera enfin amené à utiliser des décompositions par blocs. On rappelle en particulier que si $A, B, C, D, A', B', C', D' \in \mathcal{M}_n$, on a alors dans \mathcal{M}_{2n} :

$$\left[\begin{array}{cc} A & B \\ C & D \end{array}\right] \left[\begin{array}{cc} A' & B' \\ C' & D' \end{array}\right] = \left[\begin{array}{cc} AA' + BC' & AB' + BD' \\ CA' + DC' & CB' + DD' \end{array}\right].$$

$$\det\left(\left[\begin{array}{cc}A & C\\0_n & D\end{array}\right]\right) = \det\left(\left[\begin{array}{cc}A & 0_n\\C & D\end{array}\right]\right) = \det(A)\det(D).$$

I Le groupe symplectique

Soit $n \in \mathbb{N}^*$ et soit J_n ou simplement J la matrice de \mathcal{M}_{2n} définie par

$$J = \left[\begin{array}{cc} 0_n & -I_n \\ I_n & 0_n \end{array} \right].$$

On note

$$\mathcal{S}p_{2n} = \{ M \in \mathcal{M}_{2n}, \ ^tMJM = J \}.$$

- 1. Calculer J^2 et tJ en fonction de I_{2n} et J. Montrer que J est inversible et identifier son inverse.
- 2. Vérifier que $J \in \mathcal{S}p_{2n}$ et que pour tout réel α ,

$$K(\alpha) = \begin{bmatrix} I_n & 0_n \\ -\alpha I_n & I_n \end{bmatrix} \in \mathcal{S}p_{2n}.$$

- 3. Pour tout $U \in \mathcal{G}_n$, vérifier que $L_U = \begin{bmatrix} U & 0_n \\ 0_n & {}^tU^{-1} \end{bmatrix}$ est dans $\mathcal{S}p_{2n}$.
- 4. Si $M \in \mathcal{S}p_{2n}$, préciser les valeurs possibles de $\det(M)$.
- 5. Montrer que le produit de deux éléments de Sp_{2n} est un élément de Sp_{2n} .
- 6. Montrer qu'un élément de Sp_{2n} est inversible et que son inverse appartient à Sp_{2n} .
- 7. Montrer que si $M \in \mathcal{S}p_{2n}$ alors ${}^tM \in \mathcal{S}p_{2n}$.

Soit M une matrice de \mathcal{M}_{2n} écrite sous la forme

$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
, avec $A, B, C, D \in \mathcal{M}_n$.

8. Déterminer des relations sur A, B, C et D caractérisant l'appartenance de M à $\mathcal{S}p_{2n}$.

II Centre de Sp_{2n}

On s'intéresse ici au centre \mathcal{Z} de $\mathcal{S}p_{2n}$ c'est-à-dire :

$$\mathcal{Z} = \{ M \in \mathcal{S}p_{2n}, \ \forall N \in \mathcal{S}p_{2n}, \ MN = NM \}.$$

3 TSVP

9. Justifier l'inclusion suivante : $\{-I_{2n}, I_{2n}\} \subset \mathcal{Z}$.

Réciproquement, soit $M \in \mathcal{Z}$ écrite sous la forme

$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
, avec $A, B, C, D \in \mathcal{M}_n$.

- 10. En utilisant $L=\begin{bmatrix}I_n&I_n\\0_n&I_n\end{bmatrix}$ et sa transposée, obtenir $B=C=0_n$ et D=A, A étant inversible.
- 11. Soit $U \in \mathcal{G}_n$. En utilisant $L_U = \begin{bmatrix} U & 0_n \\ 0_n & {}^tU^{-1} \end{bmatrix}$, montrer que A commute avec toute matrice $U \in \mathcal{G}_n$.
- 12. Conclure que $A \in \{-I_n, I_n\}$ et $\mathcal{Z} = \{-I_{2n}, I_{2n}\}$.

Indication: on montrera d'abord que les matrices $I_n + E_{ij}$ commutent avec A, où $(E_{ij}, 1 \le i, j \le n)$ est la base canonique de \mathcal{M}_n .

III Déterminant d'une matrice symplectique

Soit M dans Sp_{2n} que l'on décompose sous forme de matrices blocs

$$M = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right] \tag{1}$$

avec $A, B, C, D \in \mathcal{M}_n$. Dans toute cette partie, les matrices A, B, C, D sont les matrices de cette décomposition.

On suppose dans les questions 13 et 14 que D est inversible.

13. Montrer qu'il existe quatre matrices Q, U, V, W de \mathcal{M}_n telles que

$$\left[\begin{array}{cc} I_n & Q \\ 0_n & I_n \end{array}\right] \left[\begin{array}{cc} U & 0_n \\ V & W \end{array}\right] = \left[\begin{array}{cc} A & B \\ C & D \end{array}\right].$$

14. En utilisant la question 8, vérifier que BD^{-1} est symétrique, puis que

$$\det(M) = \det({}^t AD - {}^t CB) = 1.$$

Soit $P, Q \in \mathcal{M}_n$ telles que tPQ soit symétrique et Q non inversible. On suppose qu'il existe deux réels différents s_1, s_2 et deux vecteurs V_1, V_2 non nuls dans \mathcal{E}_n tels que :

$$(Q - s_1 P)V_1 = (Q - s_2 P)V_2 = 0.$$

15. Montrer que le produit scalaire $(QV_1|QV_2)$ est nul.

On suppose dorénavant D non inversible.

16. Montrer que $\ker B \cap \ker D = \{0\}.$

Soit m un entier, $m \leq n$. Soit s_1, \dots, s_m des réels non nuls et deux à deux distincts et V_1, \dots, V_m des vecteurs non nuls tels que

$$(D - s_i B)V_i = 0$$
 pour $i = 1, \dots, m$.

- 17. Montrer que pour tout $i \in \{1, \dots, m\}$, $DV_i \neq 0$ et que la famille $(DV_i, i = 1, \dots, m)$ forme un système libre de \mathcal{E}_n .
- 18. En déduire qu'il existe un réel α tel que $D \alpha B$ soit inversible.
- 19. Montrer alors que toute matrice de Sp_{2n} est de déterminant égal à 1.

Fin du problème