

Mathématiques 2

TSI O

CONCOURS CENTRALE•SUPÉLEC

4 heures

Calculatrices autorisées

Notations et définitions

Dans tout le problème, n désigne un entier naturel supérieur ou égal à 1. On notera par ailleurs :

- $-S_n$ l'ensemble des permutations de l'ensemble $[\![1,n]\!]$ des entiers compris entre 1 et n, c'est-à-dire des applications de $[\![1,n]\!]$ vers lui-même qui sont bijectives. C'est un ensemble fini ayant n! éléments et qui forme un groupe pour la loi de composition \circ , appelé groupe symétrique d'ordre n.
- $-\mathcal{R}^n=\mathcal{M}_{n,1}(\mathbb{R}).$ Il est muni du produit scalaire défini par $\langle X,Y\rangle=X^TY$ ainsi que de la norme associée définie par $\|X\|=\sqrt{\langle X,X\rangle}.$
- $-\mathcal{M}_n = \mathcal{M}_n(\mathbb{R})$. Il est muni du produit scalaire défini par $(A \mid B) = \operatorname{tr}(A^T B)$ ainsi que de la norme associée définie par $N(A) = \sqrt{(A \mid A)}$.
- $-I_n = diag(1,...,1)$ la matrice unité de \mathcal{M}_n .
- $-\mathcal{O}(n) = \{P \in \mathcal{M}_n : P^T P = I_n\}$ l'ensemble des matrices orthogonales de \mathcal{M}_n . On rappelle que c'est un groupe pour le produit matriciel appelé groupe orthogonal d'ordre n.
- $\mathcal{SO}(n) = \{ P \in \mathcal{O}(n) : \det(P) = 1 \}.$

On définit également les points suivants.

- Pour tous $A, B \in \mathcal{M}_n$, on définit le segment $[A, B] = \{(1-t)A + tB, t \in [0, 1]\}.$
- Une partie Φ de \mathcal{M}_n est dite *convexe* lorsque pour tous $A, B \in \Phi$, on a $[A, B] \subset \Phi$.
- Si Φ est convexe, A ∈ Φ est dit extrémal (dans Φ) si l'égalité $A = (1 t)A_1 + tA_2$ avec t ∈]0,1[et A_1, A_2 dans Φ implique $A = A_1 = A_2$.

Ce problème a pour objectif d'étudier des propriétés de certains sous-ensembles de \mathcal{M}_n et d'en donner quelques illustrations géométriques. Il est constitué de cinq parties, largement indépendantes entre elles.

I Étude de l'ensemble \mathcal{E}_n

Dans toute cette partie, on s'intéresse à l'ensemble défini par $\mathcal{E}_n = \{P \in \mathcal{M}_n: \ \forall X \in \mathcal{R}^n, \quad \|PX\| \leqslant \|X\|\}.$

I.A — Donner une condition nécessaire et suffisante sur $(a,b) \in \mathbb{R}^2$ pour que la matrice $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ appartienne à \mathcal{E}_2 .

I.B – Si $M \in \mathcal{E}_n$, que dire de ses valeurs propres réelles ?

Calculer le spectre de $A=\frac{1}{3}\begin{pmatrix}1&-1&2\\-1&2&1\\2&2&-2\end{pmatrix}$ et en déduire que A n'appartient pas à \mathcal{E}_3 .

I.C – Montrer que \mathcal{E}_n est convexe.

 $\textbf{\textit{I.D}} - \quad \text{Soit } M \in \mathcal{M}_n. \text{ On note } C_1, C_2, ..., C_n \text{ ses vecteurs colonnes}.$

Montrer que $N(M)^2 = \sum_{j=1}^n \|C_j\|^2$. En déduire une expression de N(M) à l'aide des coefficients de M.

 $\pmb{I.E}$ — Montrer alors que \mathcal{E}_n contient la boule unité fermée de \mathcal{M}_n .

On pourra utiliser l'inégalité de Cauchy-Schwarz.

I.F — Montrer que \mathcal{E}_n est contenu dans la boule fermée de centre 0 et de rayon \sqrt{n} . Montrer de plus que cette inclusion est stricte dans le cas n=3.

I.G – Soit $A \in \mathcal{M}_n$ symétrique (vérifiant $A^T = A$). Montrer que $A \in \mathcal{E}_n$ si et seulement si toutes ses valeurs propres sont dans [-1,1].

I.H – Soit $B \in \mathcal{M}_n$ et $A = B^T B$. Montrer que $B \in \mathcal{E}_n$ si et seulement si toutes les valeurs propres de A sont dans [0,1].

II Matrices de permutation

II.A - Cas n = 3

L'ensemble S_3 des permutations de [1,3] contient 6 éléments. On note (e_1,e_2,e_3) la base canonique de \mathcal{R}^3 .

II.A.1) Sachant qu'une application σ de S_3 est déterminée par la donnée du triplet $(\sigma(1), \sigma(2), \sigma(3))$, expliciter les 6 applications de S_3 .

II.A.2) Justifier que
$$L = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 est diagonalisable dans $\mathcal{M}_3(\mathbb{C})$ et préciser ses valeurs propres complexes.

II.A.3) Justifier que $L \in \mathcal{SO}(3)$. En déduire l'existence de $M \in \mathcal{SO}(3)$ telle que $M^3 = L$. Combien existe-t-il de matrices $M \in \mathcal{M}_3(\mathbb{C})$ telles que $M^3 = L$?

II.A.4) Soit
$$K = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 Le segment $[K, L]$ est-il contenu dans $\mathcal{O}(3)$?

Les ensembles $\{K^rL^h\ :\ r\in\{0,1\}, h\in\{0,1,2\}\}$ et $\{M_\sigma:\ \sigma\in S_3\}$ sont-ils égaux ?

II.A.5) Déterminer la dimension du sous-espace vectoriel (réel) de \mathcal{M}_3 engendré par l'ensemble $\{M_{\sigma}: \sigma \in S_3\}$.

$II.B - Cas \ g\'{e}n\'{e}ral \ n \geqslant 1$

II.B.1) On note $(e_1, e_2, ..., e_n)$ la base canonique de \mathcal{R}^n . Pour tout $\sigma \in S_n$, on note M_{σ} l'unique matrice de \mathcal{M}_n telle que pour tout $j \in [\![1,n]\!]$, $M_{\sigma}e_j = e_{\sigma(j)}$.

Préciser les coefficients de M_{σ} et justifier que $M_{\sigma} \in \mathcal{O}(n)$.

II.C — Une matrice de la forme M_{σ} est dite matrice de permutation et on note \mathcal{P}_n l'ensemble des matrices de permutations de $\mathcal{M}_n(\mathbb{R})$.

Montrer que l'application $\varphi: \sigma \mapsto M_{\sigma}$ du groupe (S_n, \circ) dans le groupe multiplicatif $\mathcal{O}(n)$ est injective et que, pour tout σ et σ' de S_n , $\varphi(\sigma \circ \sigma') = \varphi(\sigma) \circ \varphi(\sigma')$.

On en déduit que \mathcal{P}_n est un sous-groupe de $\mathcal{O}(n),$ fini de cardinal n!.

II.C.1) Pour tout $\sigma \in S_n$, montrer que $\{(M_\sigma)^k: k \in \mathbb{N}^*\}$ est fini. En déduire l'existence de $p \in \mathbb{N}^*$ tel que $(M_\sigma)^p = I_n$.

III Matrices magiques

Une matrice $M = (m_{i,j})$ dans \mathcal{M}_n est dite magique s'il existe un réel s(M) tel que pour tout $i \in [1, n]$, on ait :

$$\sum_{k=1}^n m_{i,k} = \sum_{k=1}^n m_{k,i} = s(M)$$

On note Π_n l'ensemble des matrices magiques de \mathcal{M}_n .

On note encore
$$U=\begin{pmatrix}1\\ \vdots\\ 1\end{pmatrix}\in\mathcal{R}^n$$
 et $J=UU^T=\begin{pmatrix}1&\dots&1\\ \vdots&\vdots&\vdots\\ 1&\dots&1\end{pmatrix}\in\mathcal{M}_n.$

Soient également D = vect(U) la droite de \mathcal{R}^n engendrée par U et $H = \left\{ \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix} \in \mathcal{R}^n : \sum_{i=1}^n h_i = 0 \right\}$ (l'enfant également D = vect(U) la droite de \mathcal{R}^n engendrée par U et $H = \left\{ \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix} \in \mathcal{R}^n : \sum_{i=1}^n h_i = 0 \right\}$ (l'enfant également D = vect(U) la droite de \mathcal{R}^n engendrée par U et $H = \left\{ \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix} \in \mathcal{R}^n : \sum_{i=1}^n h_i = 0 \right\}$ (l'enfant également D = vect(U) et $D = \text{vect$

semble des vecteurs colonnes de $\mathcal{M}_{n,1}(\mathbb{R})$ dont la somme des coordonnées vaut 0).

III.A – Montrer que les matrices de permutations sont magiques, c'est-à-dire que $\mathcal{P}_n \subset \Pi_n$.

III.B – Montrer que les sous espaces D et H sont supplémentaires dans $\mathcal{R}^n = \mathcal{M}_{n,1}(\mathbb{R})$.

III.C - Soit $M \in \mathcal{M}_n$.

III.C.1) Montrer que M est magique si et seulement s'il existe un réel λ tel que $MJ = JM = \lambda J$.

III.C.2) Montrer que M est magique si et seulement si M laisse stable D et H.

III.C.3) Montrer que Π_n est un sous-espace vectoriel de \mathcal{M}_n stable pour le produit matriciel.

III.C.4) Montrer que $s:M\in\Pi_n\mapsto s(M)\in\mathbb{R}$ est une application linéaire, vérifiant s(MM')=s(M)s(M') pour tous $M,M'\in\Pi_n$.

III.C.5) Soit M magique et inversible. Montrer que M^{-1} est magique et calculer $s(M^{-1})$.

III.D – Déterminer $\dim(\Pi_n)$.

 $\pmb{III.E}$ — Montrer que pour tout $k \in \mathbb{N}$, on a $J^k \in \Pi_n$ et que $Z = \text{vect}(I_n, J)$ est stable pour le produit matriciel.

 $\begin{aligned} \textit{III.F} & - & \text{D\'eterminer le centre de } \Pi_n \text{ c'est-\`a-dire} : \{M \in \Pi_n : \forall A \in \Pi_n, AM = MA\}. \\ & \text{On pourra utiliser les matrices de permutation \'el\'ementaire } P_{i,j} \text{ avec } i < j, \text{ associ\'ee \'a la permutation de } \llbracket 1, n \rrbracket \text{ qui \'echange } i \text{ et } j \text{ et laisse invariant les autres \'el\'ements.} \end{aligned}$

III.G – Déterminer un supplémentaire de $\ker(s)$ dans Π_n .

III.H - Matrices super-magiques

2015-04-27 15:59:48

Une matrice M à coefficients dans \mathbb{R} de taille $n \times n$ est dite super-magique s'il existe un nombre s(M) tel que les sommes des coefficients sur les lignes, sur les colonnes et sur les deux diagonales soient toutes égales à s(M).

III.H.1) Exprimer les conditions précédentes en fonction des $M_{i,j}$ (coefficient de M à la i-ème ligne et j-ème colonne).

III.H.2) On choisit n=3. Déterminer une base de l'espace vectoriel des matrices super-magiques de \mathcal{M}_3 .

IV Matrices bistochastiques

Une matrice $M \in \mathcal{M}_n$ est dite bistochastique si M est magique $(M \in \Pi_n)$, tous les coefficients de M sont positifs et s(M) = 1. Ainsi si $M = \begin{pmatrix} m_{i,j} \end{pmatrix}$ on doit avoir : $\forall i,j \in [\![1,n]\!], \ m_{i,j} \geqslant 0$ et $\sum_{k=1}^n m_{i,k} = \sum_{k=1}^n m_{k,i} = 1$.

On note \mathcal{B}_n l'ensemble des matrices bistochastiques de $\mathcal{M}_n.$

IV.A – Montrer que les matrices de permutation sont bistochastiques, c'est-à-dire que $\mathcal{P}_n \subset \mathcal{B}_n$.

IV.B – Les matrices bistochastiques sont-elles toujours inversibles?

 $\boldsymbol{IV.C}$ – Montrer que \mathcal{B}_n est stable pour le produit matriciel.

IV.D – Montrer que $\text{vect}(\mathcal{B}_n) = \Pi_n$.

IV.E - Exemple 1

IV.E.1) Pour tout
$$a \in [0,1]$$
, on note $U_a = \begin{pmatrix} a & 1-a \\ 1-a & a \end{pmatrix}$.

Justifier qu'une telle matrice U_a est diagonalisable et préciser ses valeurs propres.

 $\textbf{IV.E.2)} \;\; \textbf{Déterminer} \; a \in [0,1] \; \textbf{tel} \; \textbf{que} \; U_a \; \textbf{soit} \; \textbf{une} \; \textbf{matrice} \; \textbf{orthogonale}.$

IV.E.3) Déterminer le sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$ engendré par $\mathcal{B}_2 = \{U_a: a \in [0,1]\}.$

IV.F - Exemple 2

Pour tout
$$b \in [0, \frac{1}{2}]$$
, on note $V_b = \begin{pmatrix} 1-2b & b & b \\ b & 1-2b & b \\ b & b & 1-2b \end{pmatrix}$.

IV.F.1) Justifier qu'une telle matrice est diagonalisable et préciser ses valeurs propres.

IV.F.2) Existe-t-il $b \in [0, \frac{1}{2}]$ tel que V_b soit une matrice orthogonale?

IV.G - Exemple 3

$$\textbf{IV.G.1)} \text{ Soit } \Gamma = \left\{ (a,b,c) \in \mathbb{R}^3 : \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix} \in \mathcal{O}(3) \right\}.$$

Montrer que Γ est la réunion de deux cercles de \mathbb{R}^3 (muni de son produit scalaire canonique) dont on précisera les centres et rayons.

IV.G.2) Soient
$$a, b, c \in [0, 1]$$
 tels que $a + b + c = 1$ et $W = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$.

Préciser dans quels cas $W \in \mathcal{O}(3)$.

V Points extrémaux de \mathcal{B}_n

 $\pmb{V.A}$ – Les sous-ensembles suivants de \mathcal{M}_n sont-ils convexes : $\mathcal{P}_n,\,\mathcal{O}(n),\,\mathcal{B}_n,\,\Pi_n$ et $GL_n(\mathbb{R})$?

V.B - Matrices de permutations

V.B.1) Décomposer la matrice $A = \frac{1}{4} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ comme combinaison linéaire, à coefficients positifs et de

somme 1, de matrices de permutations. Y a-t-il unicité de cette décomposition?

V.B.2) Montrer que les matrices de permutation sont des points extrémaux de \mathcal{B}_n .

 $\pmb{V.C}$ — On peut en fait établir la réciproque et le théorème (de Birkhoff) : « Les points extrémaux de \mathcal{B}_n sont exactement les matrices de permutations \mathcal{P}_n ».

On souhaite juste ici établir ce résultat dans le cas simple n=2.

En supposant que $U_a = \begin{pmatrix} a & 1-a \\ 1-a & a \end{pmatrix}$ dans \mathcal{B}_2 , avec $a \in [0,1]$ est un point extrémal, justifier que U_a est une matrice de permutation.