

Mathématiques 2

2015

PC

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrices autorisées

L'objet du problème est l'étude de quelques outils permettant l'étude des signaux déterministes.

On note $\mathcal{F}(\mathbb{R},\mathbb{R})$ l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} .

On dit qu'une fonction f de $\mathcal{F}(\mathbb{R},\mathbb{R})$ est à support compact s'il existe deux réels a et b vérifiant a < b tels que f est nulle en dehors du segment [a,b].

On considère dans tout le problème l'ensemble \mathcal{F}_{sr} des fonctions continues par morceaux de $\mathbb R$ dans $\mathbb R$; on appelle de telles fonctions des signaux réguliers.

On note $f^{(k)}$ la fonction dérivée k-ième d'une fonction de classe \mathcal{C}^k ; si $k=0, f^{(k)}=f$.

I Étude de nouveaux espaces fonctionnels

Fonction test \mathcal{C}^{∞} à support compact

On note \mathcal{D} l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} de classe \mathcal{C}^{∞} et à support compact.

Dans cette sous-partie, on note φ la fonction définie par :

$$\left\{ \begin{aligned} \varphi(x) &= 0 & \text{si } |x| \geqslant 1 \\ \varphi(x) &= \exp(-\frac{x^2}{1-x^2}) & \text{si } |x| < 1 \end{aligned} \right.$$

I.A.1)

- a) Étudier les variations de φ .
- b) Tracer la représentation graphique de φ .
- c) Montrer que φ est \mathcal{C}^{∞} .
- d) Montrer que \mathcal{D} est un espace vectoriel sur \mathbb{R} non réduit à $\{0\}$.
- Montrer que la fonction dérivée de tout élément de \mathcal{D} est un élément de \mathcal{D} .

I.A.3)

- a) Montrer que $\int_{\mathbb{R}} \varphi(t) \, \mathrm{d}t$ est un réel strictement positif.
- b) Pour tout réel x, on pose $\theta(x) = \frac{\varphi(x)}{\int_{\mathbb{R}} \varphi(t) dt}$ et, pour tout entier naturel n non nul, $\rho_n(x) = n\theta(nx)$.

Montrer que

$$\forall n \in \mathbb{N}^* \qquad \int_{\mathbb{R}} \rho_n(x) \, \mathrm{d}x = 1$$

Pour toute fonction f appartenant à \mathcal{F}_{sr} et tout entier naturel non nul n, on pose

$$(f*\rho_n)(x) = \int_{\mathbb{R}} f(t) \rho_n(x-t) \,\mathrm{d}t$$

I.A.4) Soit f une fonction appartenant à \mathcal{F}_{sr} .

Montrer que la fonction $f * \rho_n$ est de classe \mathcal{C}^{∞} .

- **I.A.5)** Soit I la fonction qui vaut 1 sur l'intervalle [-1,1], et 0 ailleurs. Pour $n \in \mathbb{N}^*$, on pose $I_n(x) = I * \rho_n(x)$.
- a) Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, exprimer $I_n(x)$ en fonction de φ .
- b) Pour $n\in\mathbb{N}^*,$ montrer que I_n appartient à $\mathcal D$ et étudier ses variations.
- c) Représenter graphiquement I_2 et I_3 .
- d) Montrer que la suite de fonctions (I_n) converge simplement vers une fonction J que l'on déterminera. Montrer que J et I sont égales sauf sur un ensemble fini de points.
- e) La suite de fonction (I_n) converge-t-elle uniformément vers J?

I.B – Fonctions \mathcal{C}^{∞} à décroissance rapide

On dit qu'une fonction réelle f de classe \mathcal{C}^{∞} sur \mathbb{R} est à décroissance rapide si

$$\forall (n,m) \in \mathbb{N}^2, \lim_{x \to +\infty} x^m f^{(n)}(x) = \lim_{x \to -\infty} x^m f^{(n)}(x) = 0$$

On note \mathcal{S} l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} de classe \mathcal{C}^{∞} à décroissance rapide.

- **I.B.1)** Montrer que S est un espace vectoriel sur \mathbb{R} .
- **I.B.2)** Montrer que si f est dans \mathcal{S} alors $f^{(p)}$ est dans \mathcal{S} pour tout entier naturel p.
- **I.B.3)** Montrer que si P est une fonction polynôme et si f est dans \mathcal{S} , alors Pf appartient à \mathcal{S} .

II Espace des distributions sur \mathcal{D}

II.A - Définitions, exemples

On dit que la suite de fonctions $(\varphi_n)_{n\in\mathbb{N}}$ de \mathcal{D} converge dans \mathcal{D} vers la fonction φ de \mathcal{D} et on note $\varphi_n \xrightarrow{\mathcal{D}} \varphi$ si, pour tout entier $k \in \mathbb{N}$, la suite de fonctions $(\varphi_n^{(k)})_{n\in\mathbb{N}}$ converge uniformément vers $\varphi^{(k)}$ et s'il existe un réel a > 0 tel que

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, \quad |x| > a \Longrightarrow \varphi_n(x) = 0$$

On appelle distribution sur \mathcal{D} toute application linéaire $T:\mathcal{D}\to\mathbb{R}$ qui vérifie

$$\forall \varphi \in \mathcal{D}, \ \forall (\varphi_n)_{n \in \mathbb{N}} \in \mathcal{D}^{\mathbb{N}} \qquad \varphi_n \overset{\mathcal{D}}{-\!\!\!-\!\!\!-\!\!\!-} \varphi \Longrightarrow T(\varphi_n) \to T(\varphi)$$

On note \mathcal{D}' l'ensemble des distributions sur $\mathcal{D}.$

II.A.1) Montrer que si $f \in \mathcal{F}_{sr}$ alors l'application T_f définie par

$$\forall \varphi \in \mathcal{D}$$
 $T_f(\varphi) = \int_{-\infty}^{+\infty} f(x)\varphi(x) \, \mathrm{d}x$

définit une distribution sur \mathcal{D} .

On appelle distribution régulière toute distribution de la forme T_f , où $f \in \mathcal{F}_{sr}$.

II.A.2) Soit U la fonction définie par

$$\begin{cases} U(x) = 1 & \text{si } x \geqslant 0 \\ U(x) = 0 & \text{si } x < 0 \end{cases}$$

Justifier que U définit une distribution sur \mathcal{D} .

- **II.A.3)** Soit a un nombre réel.
- a) Montrer que l'application δ_a qui à tout $\varphi \in \mathcal{D}$ associe $\varphi(a)$ est une distribution.
- b) En utilisant la suite de fonctions $(\varphi_n)_{n\in\mathbb{N}^*}$ d'éléments de \mathcal{D} définie par

$$\forall t \in \mathbb{R}, \ \varphi_n(t) = \begin{cases} \exp(\frac{(t-a)^2}{(t-a+1/n)(t-a-1/n)}) & \text{si } t \in]a-1/n, a+1/n[\\ 0 & \text{sinon} \end{cases}$$

montrer que $\forall f \in \mathcal{F}_{sr}, T_f \neq \delta_a$.

II.B – Dérivation des distributions sur \mathcal{D}

Si T est une distribution sur \mathcal{D} , on définit la distribution dérivée T' par

$$\forall \varphi \in \mathcal{D}, \quad T'(\varphi) = -T(\varphi')$$

II.B.1) Justifier que T' est une distribution sur \mathcal{D} .

Dans la suite du problème, pour $f \in \mathcal{F}_{sr}$, on notera $T_f' = (T_f)'$.

- II.B.2) Soit f une fonction continue de \mathbb{R} dans \mathbb{R} . Si f est de classe \mathcal{C}^1 , montrer que $(T_f)' = T_{f'}$. Adapter ce résultat au cas où f est de classe \mathcal{C}^1 par morceaux.
- II.B.3) Montrer que $T_U' = \delta_0$.

II.B.4) On considère l'application T qui à toute fonction φ de \mathcal{D} associe le nombre réel $T(\varphi)$ défini par

$$T(\varphi) = \int_{-1}^{0} t\varphi(t) dt + \int_{0}^{+\infty} \varphi(t) dt$$

- a) Montrer que T est une distribution régulière.
- b) Calculer la dérivée de cette distribution.
- **II.B.5)** Si f est un élément de \mathcal{F}_{sr} et si a est un réel, on pose

$$\lim_{x\to a^-} f(x) = f(a^-) \qquad \text{ et } \qquad \lim_{x\to a^+} f(x) = f(a^+)$$

La différence $f(a^+) - f(a^-)$, appelée saut en a, est notée $\sigma(a)$.

a) Soient $a_1, ..., a_p$ des réels tels que $a_1 < ... < a_p$.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 par morceaux.

On suppose de plus que f est continue sur $]-\infty,a_1[\;\cup\;]a_1,a_2[\;\cup\;\ldots\;\cup\;]a_p,+\infty[$.

Montrer que

$$T_f' = T_{f'} + \sum_{i=1}^p \sigma(a_i) \delta_{a_i}$$

b) Retrouver par cette méthode les résultats des questions II.B.3 et II.B.4.b.

II.C – Suites de distributions sur \mathcal{D}

On dit que la suite de distributions $(T_n)_{n\in\mathbb{N}}$ converge vers la distribution T si

$$\forall \varphi \in \mathcal{D}, \ \lim_{n \to \infty} T_n(\varphi) = T(\varphi)$$

- **II.C.1)** Pour n entier naturel non nul, on considère la fonction U_n nulle sur les réels négatifs, affine sur l'intervalle [0, 1/n], égale à 1 pour les réels plus grand que 1/n et continue sur \mathbb{R} .
- a) Montrer que la suite de distributions régulières $(T_{U_n})_{n\in\mathbb{N}}$ converge vers T_U .
- b) Montrer que

$$\forall \varphi \in \mathcal{D} \qquad T'_{U_n}(\varphi) = \int_0^{1/n} n\varphi(t) \, \mathrm{d}t$$

- c) En déduire que la distribution T_{U_n}' est régulière et donner une fonction V_n telle que $T_{V_n} = T_{U_n}'$.
- d) Représenter V_n pour n=1,2,4.
- e) Montrer que si la suite de distributions $(T_n)_{n\in\mathbb{N}}$ converge vers la distribution T, alors $(T_n')_{n\in\mathbb{N}}$ converge vers T'.
- f) Quelle est la limite de T_{U_n}' quand n tend vers l'infini ?
- II.C.2) Pour tout entier naturel non nul n, on considère les fonctions

$$\begin{cases} f_n(x) = \frac{n}{1+n^2x^2} \\ g_n(x) = nx^n & \text{si } x \in [0,1] \text{ et nulle ailleurs} \\ h_n(x) = n^2\sin nx & \text{si } x \in [-\pi/n,\pi/n] \text{ et nulle ailleurs} \end{cases}$$

- a) Vérifier qu'elles appartiennent à \mathcal{F}_{sr} .
- b) Étudier les variations des fonctions f_n , g_n et h_n puis tracer leur représentation graphique pour n=1 et n=2.
- c) Étudier la convergence des suites de distributions $(T_{f_n}),\,(T_{g_n})$ et $(T_{h_n}).$

• • • FIN • • •