

Mathématiques 2

MP Crisées

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrices autorisées

Autour des sommes d'Euler

Dans tout le problème, on note pour tout entier $n\geqslant 1,$ $H_n=\sum_{k=1}^n\frac{1}{k}=1+\frac{1}{2}+\cdots+\frac{1}{n}.$

On note ζ la fonction définie pour x>1 par $\zeta(x)=\sum_{n=1}^{+\infty}\frac{1}{n^x}$.

Le but du problème est d'étudier des séries faisant intervenir la suite (H_n) et notamment d'obtenir une relation due à Euler qui exprime, pour r entier naturel supérieur ou égal à 2, $\sum_{n=1}^{+\infty} \frac{H_n}{(n+1)^r}$ à l'aide de valeurs de la fonction ζ en des points entiers.

I Représentation intégrale de sommes de séries

I.A -

I.A.1) Justifier que la série de terme général $a_n = \frac{1}{n} - \int_{n-1}^n \frac{\mathrm{d}t}{t}$ converge.

I.A.2) Montrer qu'il existe une constante réelle A telle que $H_n = \ln n + A + o(1)$. En déduire que $H_n \sim \ln n$.

I.B – Soit r un entier naturel.

Pour quelles valeurs de r, la série $\sum_{n\geqslant 1} \frac{H_n}{(n+1)^r}$ est-elle convergente ?

Dans toute la suite on notera $S_r = \sum_{n=1}^{+\infty} \frac{H_n}{(n+1)^r}$ lorsque la série converge.

I.C –

I.C.1) Donner sans démonstration les développements en série entière des fonctions $t \mapsto \ln(1-t)$ et $t \mapsto \frac{1}{1-t}$ ainsi que leur rayon de convergence.

I.C.2) En déduire que la fonction

$$t\mapsto -\frac{\ln(1-t)}{1-t}$$

est développable en série entière sur]-1,1[et préciser son développement en série entière à l'aide des réels H_n .

 $\pmb{I.D}$ – Pour tout couple d'entiers naturels (p,q) et pour tout $\varepsilon \in]0,1[$, on note

$$I_{p,q} = \int_0^1 t^p (\ln t)^q \,\mathrm{d}t \qquad \text{et} \qquad I_{p,q}^\varepsilon = \int_\varepsilon^1 t^p (\ln t)^q \,\mathrm{d}t$$

I.D.1) Montrer que l'intégrale $I_{p,q}$ existe pour tout couple d'entiers naturels (p,q).

I.D.2) Montrer que, $\forall p \in \mathbb{N}, \forall q \in \mathbb{N}^*, \forall \varepsilon \in]0,1[, I_{p,q}^{\varepsilon} = -\frac{q}{p+1}I_{p,q-1}^{\varepsilon} - \frac{\varepsilon^{p+1}(\ln \varepsilon)^q}{p+1}.$

 $\textbf{I.D.3)} \quad \text{En d\'eduire que l'on a } \forall p \in \mathbb{N}, \forall q \in \mathbb{N}^*, \quad I_{p,q} = -\frac{q}{p+1}I_{p,q-1}.$

I.D.4) En déduire une expression de $I_{p,q}$ en fonction des entiers p et q.

I.E – Soit r un entier naturel non nul et f une fonction développable en série entière sur]-1,1[.

On suppose que pour tout x dans]-1,1[, $f(x)=\sum_{n=0}^{+\infty}a_nx^n$ et que $\sum_{n\geq 0}\frac{a_n}{(n+1)^r}$ converge absolument.

Montrer que $\int_0^1 (\ln t)^{r-1} f(t) dt = (-1)^{r-1} (r-1)! \sum_{n=0}^{+\infty} \frac{a_n}{(n+1)^r}$.

I.F.1) Déduire des questions précédentes que pour tout entier $r \ge 2$,

$$S_r = \sum_{n=1}^{+\infty} \frac{H_n}{(n+1)^r} = \frac{(-1)^r}{(r-1)!} \int_0^1 (\ln t)^{r-1} \frac{\ln (1-t)}{1-t} \, \mathrm{d}t$$

$$\textbf{I.F.2)} \quad \text{ \'{E}tablir que l'on a alors } S_r = \frac{(-1)^r}{2(r-2)!} \int_0^1 \frac{(\ln t)^{r-2} (\ln (1-t))^2}{t} \, \mathrm{d}t.$$

I.F.3) En déduire que
$$S_2 = \frac{1}{2} \int_0^1 \frac{(\ln t)^2}{1-t} dt$$

puis trouver la valeur de S_2 en fonction de $\zeta(3)$.

II La fonction β

II.A - La fonction Γ

II.A.1) Soit x > 0. Montrer que $t \mapsto t^{x-1}e^{-t}$ est intégrable sur $]0, +\infty[$.

Dans toute la suite, on notera Γ la fonction définie sur \mathbb{R}^{+*} par $\Gamma(x)=\int_0^{+\infty}t^{x-1}e^{-t}\,\mathrm{d}t$.

On admettra que Γ est de classe \mathcal{C}^{∞} sur son ensemble de définition, à valeurs strictement positives et qu'elle vérifie, pour tout réel x > 0, la relation $\Gamma(x+1) = x\Gamma(x)$.

II.A.2) Soit x et α deux réels strictement positifs. Justifier l'existence de $\int_0^{+\infty} t^{x-1} e^{-\alpha t} dt$ et donner sa valeur en fonction de $\Gamma(x)$ et α^x .

II.B – La fonction β et son équation fonctionnelle

Pour (x,y) dans $(\mathbb{R}^{+*})^2$, on définit $\beta(x,y)=\int_0^1 t^{x-1}(1-t)^{y-1}\,\mathrm{d}t$.

- **II.B.1)** Justifier l'existence de $\beta(x, y)$ pour x > 0 et y > 0.
- **II.B.2)** Montrer que pour tous réels x > 0 et y > 0, $\beta(x, y) = \beta(y, x)$.
- **II.B.3)** Soient x > 0 et y > 0. Établir que $\beta(x+1,y) = \frac{x}{x+y}\beta(x,y)$.
- **II.B.4)** En déduire que pour $x > 0, y > 0, \beta(x+1,y+1) = \frac{xy}{(x+y)(x+y+1)}\beta(x,y).$

II.C - Relation entre la fonction β et la fonction Γ

On veut montrer que pour x>0 et $y>0, \quad \beta(x,y)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$ relation qui sera notée (\mathcal{R}) .

II.C.1) Expliquer pourquoi il suffit de montrer la relation (\mathcal{R}) pour x > 1 et y > 1.

Dans toute la suite de cette question on suppose x > 1 et y > 1.

II.C.2) Montrer que
$$\beta(x,y) = \int_0^{+\infty} \frac{u^{x-1}}{(1+u)^{x+y}} du$$
.

On pourra utiliser le changement de variable $t = \frac{u}{1+u}$.

II.C.3) On note $F_{x,y}$ la primitive sur \mathbb{R}^+ de $t\mapsto e^{-t}t^{x+y-1}$ qui s'annule en 0. Montrer que

$$\forall t \in \mathbb{R}^+, F_{x,y}(t) \leqslant \Gamma(x+y)$$

II.C.4) Soit
$$G(a) = \int_0^{+\infty} \frac{u^{x-1}}{(1+u)^{x+y}} F_{x,y}((1+u)a) du$$
.

Montrer que G est définie et continue sur \mathbb{R}^+ .

- **II.C.5)** Montrer que $\lim_{a\to +\infty} G(a) = \Gamma(x+y)\beta(x,y)$.
- **II.C.6)** Montrer que G est de classe \mathcal{C}^1 sur tout segment [c,d] inclus dans \mathbb{R}^{+*} , puis que G est de classe \mathcal{C}^1 sur \mathbb{R}^{+*} .
- **II.C.7)** Exprimer pour a > 0, G'(a) en fonction de $\Gamma(x)$, e^{-a} et a^{y-1}
- **II.C.8)** Déduire de ce qui précède la relation (\mathcal{R}) .

2015-02-03 09:35:07

III La fonction digamma

On définit la fonction ψ (appelée fonction digamma) sur \mathbb{R}^{+*} comme étant la dérivée de $x \mapsto \ln(\Gamma(x))$.

Pour tout réel x > 0, $\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$

III.A – Montrer que pour tout réel x > 0, $\psi(x+1) - \psi(x) = \frac{1}{x}$.

III.B - Sens de variation de ψ

III.B.1) À partir de la relation (\mathcal{R}) , justifier que $\frac{\partial \beta}{\partial y}$ est définie sur $(\mathbb{R}^{+*})^2$.

Établir que pour tous réels x>0 et $y>0, \frac{\partial \beta}{\partial y}(x,y)=\beta(x,y)\big(\psi(y)-\psi(x+y)\big).$

III.B.2) Soit x > 0 fixé. Quel est le sens de variation sur \mathbb{R}^{+*} de la fonction $y \mapsto \beta(x, y)$?

III.B.3) Montrer que la fonction ψ est croissante sur \mathbb{R}^{+*} .

III.C – Une expression de ψ comme somme d'une série de fonctions

III.C.1) Montrer que pour tout réel x > -1 et pour tout entier $n \ge 1$

$$\psi(1+x) - \psi(1) = \psi(n+x+1) - \psi(n+1) + \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+x}\right)$$

III.C.2) Soit n un entier ≥ 2 et x un réel > -1. On pose p = E(x) + 1, où E(x) désigne la partie entière de x. Prouver que

$$0\leqslant \psi(n+x+1)-\psi(n)\leqslant H_{n+p}-H_{n-1}\leqslant \frac{p+1}{n}$$

III.C.3) En déduire que, pour tout réel x > -1,

$$\psi(1+x) = \psi(1) + \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+x} \right)$$

III.D - Un développement en série entière

On note g la fonction définie sur $[-1, +\infty]$ par

$$g(x) = \sum_{n=2}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+x} \right)$$

III.D.1) Montrer que g est de classe \mathcal{C}^{∞} sur $[-1, +\infty[$.

Préciser notamment la valeur de $g^{(k)}(0)$ en fonction de $\zeta(k+1)$ pour tout entier $k \ge 1$.

III.D.2) Montrer que pour tout entier n et pour tout x dans]-1,1[

$$\left| g(x) - \sum_{k=0}^{n} \frac{g^{(k)}(0)}{k!} x^{k} \right| \leqslant \zeta(2) |x|^{n+1}$$

Montrer que g est développable en série entière sur]-1,1[.

III.D.3) Prouver que pour tout x dans]-1,1[,

$$\psi(1+x) = \psi(1) + \sum_{n=1}^{+\infty} (-1)^{n+1} \zeta(n+1) x^n$$

IV Une expression de S_r en fonction de valeurs entières de ζ

Dans cette partie, on note B la fonction définie sur \mathbb{R}^{+*} par $B(x) = \frac{\partial^2 \beta}{\partial y^2}(x,1)$.

IV.A - Une relation entre B et ψ

Justifier que B est définie sur \mathbb{R}^{+*} .

À l'aide de la relation trouvée au III.B.1 établir que pour tout réel x>0

$$xB(x) = (\psi(1+x) - \psi(1))^2 + (\psi'(1) - \psi'(1+x))$$

En déduire que B est \mathcal{C}^{∞} sur \mathbb{R}^{+*} .

IV.B – Expression de S_r à l'aide de la fonction B

IV.B.1) Montrer que pour tout réel
$$x > 0$$
, $B(x) = \int_0^1 (\ln(1-t))^2 t^{x-1} dt$.

IV.B.2) Donner sans justification une expression, à l'aide d'une intégrale, de $B^{(p)}(x)$, pour tout entier naturel p et tout réel x > 0.

IV.B.3) En déduire que pour tout entier
$$r \geqslant 2$$
, $S_r = \frac{(-1)^r}{2(r-2)!} \lim_{x \to 0^+} B^{(r-2)}(x)$.

 ${\bf IV.B.4)}$ Retrouver alors la valeur de S_2 déjà calculée au I.F.3.

$$IV.C$$
 - Soit φ la fonction définie $]-1,+\infty[$ par $\varphi(x)=(\psi(1+x)-\psi(1))^2+(\psi'(1)-\psi'(1+x)).$

IV.C.1) Montrer que φ est \mathcal{C}^{∞} sur son ensemble de définition et donner pour tout entier naturel $n \geq 2$ la valeur de $\varphi^{(n)}(0)$ en fonction des dérivées successives de ψ au point 1.

IV.C.2) Conclure que, pour tout entier $r \ge 3$,

$$2S_r=r\zeta(r+1)-\sum_{k=1}^{r-2}\zeta(k+1)\zeta(r-k)$$

 \bullet \bullet FIN \bullet \bullet

