SESSION 2015 PSIMA02

EPREUVE SPECIFIQUE - FILIERE PSI

MATHEMATIQUES

Durée : 4 heures

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont autorisées

Notations

- $-\mathbb{R}$ désigne l'ensemble des réels et \mathbb{R}^+ désigne l'intervalle $[0, +\infty[$.
- Si I est un intervalle réel non réduit à un point, on note $C^1(I)$ l'espace vectoriel des fonctions de classe C^1 définies sur I à valeurs dans \mathbb{R} .
- Soit \mathbb{K} l'ensemble \mathbb{R} ou \mathbb{C} . Pour tout entier naturel non nul, $\mathcal{M}_n(\mathbb{K})$ désigne le \mathbb{K} -espace vectoriel des matrices à n lignes et n colonnes et à coefficients dans \mathbb{K} .
- Un vecteur de \mathbb{K}^n est noté :

$$X = (x_k)_{1 \le k \le n} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

- Une matrice A de $\mathcal{M}_n(\mathbb{K})$ est notée :

$$A = ((a_{j,k}))_{1 \le j,k \le n}$$

où $a_{j,k}$ est le coefficient de A situé en ligne j et colonne k.

- On dit qu'une application :

$$M: I \rightarrow \mathcal{M}_n(\mathbb{K})$$

 $t \mapsto M(t) = ((a_{j,k}(t)))_{1 \leq j,k \leq n}$

est de classe \mathcal{C}^1 sur I, si pour tout couple (j,k) la fonction $t\mapsto a_{j,k}\left(t\right)$ est de classe \mathcal{C}^1 sur I et dans ce cas, on note $M'\left(t\right)$ la matrice $\left(\left(a'_{j,k}\left(t\right)\right)\right)_{1\leq j,k\leq n}$.

Soient I un intervalle réel non réduit à un point et $A: I \to \mathcal{M}_n(\mathbb{C})$ une fonction continue. Dans ce problème, on s'intéresse au système différentiel :

$$X'(t) = A(t)X(t) \qquad (E)$$

où $X:I\to\mathbb{C}^n$ est une application de classe $\mathcal{C}^1.$

A l'exception de la question I.2 utilisée tout au long du sujet, les trois parties sont indépendantes.

Partie I

Quelques exemples d'étude d'un système différentiel

I.1 Qu'affirme le théorème de Cauchy-Lipschitz linéaire quant à la structure de l'ensemble des solutions de (E)?

I.2 Vecteurs propres communs

On suppose qu'il existe un vecteur non nul $V \in \mathbb{C}^n$ et une fonction continue $\lambda: I \to \mathbb{C}$ tels que pour tout $t \in I$ on ait :

$$A(t) V = \lambda(t) V.$$

Montrer que la fonction :

$$X: I \to \mathbb{C}^n$$

 $t \mapsto \alpha(t) V$

est solution de (E) si, et seulement si, la fonction α est solution d'une équation différentielle linéaire du premier ordre que l'on précisera et pour laquelle on donnera une expression des solutions.

I.3 Un premier exemple

On suppose pour cette question que n=2. Soient a et b deux complexes tels que $a-1-b\neq 0$. On suppose que, pour tout $t\in I=\mathbb{R}$, on a :

$$A(t) = \begin{pmatrix} a & 1-a \\ b & 1-b \end{pmatrix}.$$

Déterminer une base de l'espace vectoriel des solutions de (E).

I.4 Un deuxième exemple

On suppose également pour cette question que n=2. Soient μ une constante complexe et a,b des fonctions continues de I dans \mathbb{C} , la fonction b ne s'annulant jamais sur I. On suppose que pour tout réel $t \in I$, on a :

$$A(t) = \begin{pmatrix} a(t) & \mu b(t) \\ b(t) & a(t) + (\mu - 1) b(t) \end{pmatrix}.$$

- **I.4.1** Traiter le cas particulier où $\mu = 1$.
- **I.4.2** Montrer qu'il existe deux vecteurs non nuls V_1 et V_2 dans \mathbb{C}^2 et deux fonctions continues λ_1 et λ_2 de I dans \mathbb{C} tels que pour tout $t \in I$ on ait :

$$A(t) V_1 = \lambda_1(t) V_1 \text{ et } A(t) V_2 = \lambda_2(t) V_2.$$

I.4.3 Donner une condition nécessaire et suffisante portant sur μ pour que l'on ait :

$$\forall t \in I, \quad \lambda_1(t) \neq \lambda_2(t).$$

On supposera cette condition vérifiée pour la question suivante.

I.4.4 Déterminer une base de l'espace vectoriel des solutions de (E).

Partie II

Développement en série entière des solutions pour A constante

II.1 Norme matricielle induite

On se donne une norme vectorielle $X \mapsto \|X\|$ sur \mathbb{C}^n et on lui associe la fonction N définie sur $\mathcal{M}_n(\mathbb{C})$ par :

$$\forall A \in \mathcal{M}_n\left(\mathbb{C}\right), \ N\left(A\right) = \sup_{X \in \mathbb{C}^n \setminus \{0\}} \frac{\|AX\|}{\|X\|}.$$

- **II.1.1** Montrer que l'application N définit une norme sur $\mathcal{M}_n(\mathbb{C})$.
- **II.1.2** Montrer que, pour toutes matrices A et B dans $\mathcal{M}_n(\mathbb{C})$, on a :

$$N(AB) \le N(A)N(B)$$
.

II.2 Développement en série entière des solutions

II.2.1 On suppose pour cette question, que $I = \mathbb{R}$ et que la fonction A est constante.

Montrer que si X est solution de (E), elle est alors de classe \mathcal{C}^{∞} sur I et que pour tout entier naturel k, on a :

$$X^{(k)}(t) = A^k X(t)$$

(avec la convention que $X^{(0)} = X$ et $A^0 = I_n$).

II.2.2 On note $X_0 = X(0)$. Montrer que pour tout entier naturel p et tout réel $t \in I$, on a :

$$X(t) = \left(\sum_{k=0}^{p} \frac{t^{k}}{k!} A^{k}\right) X_{0} + \int_{0}^{t} \frac{(t-u)^{p}}{p!} A^{p+1} X(u) du.$$

II.2.3 Montrer que :

$$X(t) = \lim_{p \to +\infty} \left(\sum_{k=0}^{p} \frac{t^k}{k!} A^k \right) X_0$$

et en déduire que les coordonnées de X sont développables en série entière sur \mathbb{R} .

II.3 Un exemple

On suppose pour cette question, que n=4, que $I=\mathbb{R}$ et que la fonction $t\mapsto A\left(t\right)$ est constante et égale à :

$$A = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \in M_4(\mathbb{C}).$$

- **II.3.1** Calculer le polynôme caractéristique $P_A(X)$ de A.
- **II.3.2** Soit k un entier naturel non nul.

Montrer que la famille $(1, X, X(X-1), X(X-1)^2)$ est une base de $\mathbb{C}_3[X]$, puis exprimer le reste de la division euclidienne de X^k par $P_A(X)$ dans cette base.

- **II.3.3** En déduire, pour tout entier $k \ge 1$, une expression de A^k en fonction de A, $A(A I_4)$ et $A(A I_4)^2$.
- **II.3.4** Calculer $A(A I_4)$ et $A(A I_4)^2$.
- II.3.5 Préciser le rayon de convergence de la série entière :

$$\sum_{n=1}^{+\infty} \frac{t^n}{n!} (n-1)$$

ainsi que sa somme.

II.3.6 Soit $X_0=\begin{pmatrix}1\\0\\1\\0\end{pmatrix}\in\mathbb{C}^4$. Déterminer la solution du problème de Cauchy linéaire

$$\begin{cases} X' = AX \\ X(0) = X_0 \end{cases}.$$

Partie III

Etude de deux fonctions

III.1 L'intégrale de Gauss

- **III.1.1** Montrer que l'intégrale de la fonction $f: t \mapsto e^{-t^2}$ est convergente sur \mathbb{R}^+ .
- **III.1.2** Montrer que les fonctions F et G définies sur \mathbb{R}^+ par :

$$\forall x \in \mathbb{R}^+, \ F(x) = \left(\int_0^x e^{-t^2} dt\right)^2, \ G(x) = \int_0^1 \frac{e^{-x^2(t^2+1)}}{t^2+1} dt$$

sont de classe C^1 sur \mathbb{R}^+ , puis préciser les dérivées d'ordre 1 de F et de G.

III.1.3 Montrer que :

$$\forall x \in \mathbb{R}^+, F'(x) + G'(x) = 0$$

et en déduire la valeur de F + G.

III.1.4 Montrer que :

$$\lim_{x \to +\infty} G\left(x\right) = 0 \text{ et } \lim_{x \to +\infty} F\left(x\right) = \frac{\pi}{4}.$$

III.1.5 En déduire que :

$$\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}.$$

- III.2 Les fonctions u et v
 - **III.2.1** Montrer que les fonctions :

$$u\left(t\right) = \int_{0}^{+\infty} \frac{e^{-x}\cos(tx)}{\sqrt{x}} dx \text{ et } v\left(t\right) = \int_{0}^{+\infty} \frac{e^{-x}\sin(tx)}{\sqrt{x}} dx$$

sont bien définies et de classe C^1 sur \mathbb{R} .

III.2.2 Montrer que la fonction w=u+iv est solution d'une équation différentielle, puis en déduire que :

$$X\left(t\right) = \left(\begin{array}{c} u\left(t\right) \\ v\left(t\right) \end{array}\right)$$

est solution d'un système différentiel du premier ordre

$$X'(t) = A(t)X(t) \qquad (E_1)$$

où la fonction matricielle $A: \mathbb{R} \to \mathcal{M}_2(\mathbb{C})$ est à déterminer.

- **III.2.3** Déterminer, pour tout réel t, les valeurs propres complexes et les sous-espaces propres de $A\left(t\right)$.
- **III.2.4** Déterminer une base de l'espace vectoriel des solutions sur \mathbb{C} du système (E_1) et en déduire la solution générale de (E_1) .
- III.2.5 Calculer u(0), v(0) et en déduire l'expression réelle de u et de v.

Fin de l'énoncé