

# Mathématiques 1

PSI 7

**CONCOURS CENTRALE•SUPÉLEC** 

4 heures

Calculatrices autorisées

#### Notations

- On note |x| la partie entière du réel x.
- On se place dans le plan euclidien  $\mathbb{R}^2$  muni de son repère orthonormé canonique  $\mathcal{R}$ , d'origine O.

Les trois parties sont dans une large mesure indépendantes ; les parties II et III utilisent les notations R(z) et  $V_n(z)$  introduites dans la première partie.

## I Première partie

I.A — Soit z un nombre complexe, de partie réelle x et de partie imaginaire y, tels que  $(x,y) \notin \mathbb{R}^- \times \{0\}$ . On note

$$\theta(z) = 2\arctan\left(\frac{y}{x+\sqrt{x^2+y^2}}\right) \qquad \text{et} \qquad R(z) = \frac{z+|z|}{\sqrt{2\left(\text{Re}(z)+|z|\right)}}$$

- **I.A.1)** Justifier que  $\theta$  et R sont bien définies.
- **I.A.2)** Lorsque z vaut successivement  $z_1 = 4$ ,  $z_2 = 2i$  et  $z_3 = 1 i\sqrt{3}$ , calculer R(z),  $\theta(z)$  et  $(R(z))^2$ .
- **I.A.3)** Vérifier que  $\theta(z) \in ]-\pi, \pi[$  et que  $R(z) \in \mathcal{P} = \{Z \in \mathbb{C}, \operatorname{Re}(Z) > 0\}.$
- **I.A.4)** Représenter sur une figure le cercle  $\mathcal{C}$  de centre O et de rayon |z| et les points M d'affixe z et B d'affixe -|z|.

En considérant des angles bien choisis, montrer que

$$\theta(z) = \operatorname{Arg}(z) = 2\operatorname{Arg}(z + |z|)$$

où  $\operatorname{Arg}(z)$  désigne la détermination principale de l'argument du nombre complexe z.

- **I.A.5)** Déterminer  $[R(z)]^2$ ,  $\theta \circ R(z)$  et  $|z|^{1/2}$  e<sup>i  $\theta(z)/2$ </sup> en fonction de z, R(z) et  $\theta(z)$ .
- **I.A.6)** Résoudre à l'aide de R l'équation  $Z^2 = z$ , d'inconnue  $Z \in \mathbb{C}$ .
- **I.A.7)** En déduire que R est une bijection de  $\mathbb{C} \setminus \mathbb{R}^-$  dans  $\mathcal{P}$ . Préciser sa bijection réciproque.

**Dans la suite du problème**, on prolonge R à  $\mathbb{C}$  en posant  $R(x) = i\sqrt{|x|}$  si  $x \in \mathbb{R}^-$ .

I.B – Soient a et b deux nombres complexes tels que  $(a,b) \neq (0,0)$ .

On dit qu'une suite complexe  $U=(u_n)_{n\in\mathbb{N}}$  vérifie la relation de récurrence  $(E_{a.b})$  si l'on a

$$\forall n \in \mathbb{N}, \quad u_{n+2} = 2au_{n+1} + bu_n$$

**I.B.1)** On suppose que  $a^2+b\neq 0$ . On note  $d=R(a^2+b)$ . On appelle W la suite  $W=\left((a+d)^n\right)_{n\in\mathbb{N}}$  et W' la suite  $W'=\left((a-d)^n\right)_{n\in\mathbb{N}}$ .

Montrer que U vérifie  $E_{a,b}$  si et seulement si  $U \in \text{Vect}(W, W')$ .

Déterminer U vérifiant  $E_{a,b}$  et les conditions initiales  $u_0 = 0$  et  $u_1 = 1$ , en fonction de d, W et W'.

**I.B.2)** On suppose que  $a^2 + b = 0$  et  $a \neq 0$ . On note W et W' les suites  $W = (a^n)_{n \in \mathbb{N}}$  et  $W' = (n a^n)_{n \in \mathbb{N}}$ . Montrer que U vérifie  $E_{a,b}$  si et seulement si  $U \in \text{Vect}(W, W')$ .

Déterminer U vérifiant  $E_{a,b}$  et les conditions initiales  $u_0=0$  et  $u_1=1$ , en fonction de a,W et W'.

### Dans la suite du problème, on note:

- $\bullet \quad U(a,b) = \big(U_n(a,b)\big)_{n \in \mathbb{N}} \text{ l'unique suite vérifiant } E_{a,b} \text{ et les conditions initiales } U_0(a,b) = 0 \text{ et } U_1(a,b) = 1 \text{ ; } U_0(a,b) = 0 \text{ et } U_1(a,b) = 0 \text{ et } U_1(a$
- $V_n(z) = U_{n+1}(z, -1)$  pour tous  $z \in \mathbb{C}$  et  $n \in \mathbb{N}$ .
- **I.B.3)** Expliciter  $V_1(z)$ ,  $V_2(z)$  et  $V_3(z)$  et déterminer leurs racines dans  $\mathbb{C}$ .

**I.B.4)** Montrer que, pour tous  $z \in \mathbb{C}$  et  $n \in \mathbb{N}$ , on a

$$V_n(z) = \sum_{j=0}^{\lfloor n/2 \rfloor} \binom{n-j}{j} \, (2z)^{n-2j} \, (-1)^j \tag{I.1} \label{eq:I.1}$$

On pourra procéder par récurrence.

## II Deuxième partie

Soit  $z \in \mathbb{C}$ . On note  $C_z$  (respectivement  $\Omega_z$ ) l'ensemble des points du plan d'affixe complexe Z tels que |Z(Z-2z)|=1 (respectivement |Z(Z-2z)|<1).

II.A – Dans cette question on suppose que z est un réel noté a.

On se place dans le repère orthonormé  $\mathcal{R}'$  de centre O' d'affixe a, déduit de  $\mathcal{R}$  par translation.

II.A.1) Montrer qu'une équation de la courbe  $C_a$  en « coordonnées polaires  $(\rho,\theta)$  » dans le repère  $\mathcal{R}'$  est

$$(\rho^2 + a^2)^2 - 4a^2\rho^2\cos^2\theta = 1$$

II.A.2) Simplifier cette équation lorsque a = 1. Étudier et tracer l'allure de la courbe  $C_1$ .

II.B – On suppose à nouveau z complexe quelconque.

II.B.1) Justifier que  $\Omega_z$  est une partie bornée du plan. Est-elle ouverte ? fermée ? compacte ?

II.B.2) Justifier que l'origine O est un point intérieur à  $\Omega_z$ .

II.C — On reprend dans cette question la notation R introduite dans la première partie à la question I.A.

**II.C.1)** Soit  $z \in \mathbb{C}$  tel que  $z^2 \neq 1$ . On note

$$r = |R(z^2 - 1)|, \ s = |z + R(z^2 - 1)|, \ t = |z - R(z^2 - 1)|, \ h = \max(s, t)$$

Prouver que, pour tout  $n \in \mathbb{N}$ ,  $|V_n(z)| \leqslant \frac{h^{n+1}}{r}$ .

II.C.2) Que dire du rayon de convergence de la série entière  $Z\mapsto \sum_{n=0}^{+\infty}V_n(z)\,Z^n$  ?

On note  $g_z$  sa somme.

**II.C.3)** Lorsque cela a un sens, calculer  $(1 - 2zZ + Z^2) g_z(Z)$ .

II.C.4) Déterminer l'ensemble de définition  $D_z$  de la fonction  $Z \mapsto \frac{1}{1 - 2zZ + Z^2}$ .

II.C.5) Montrer qu'il existe un disque ouvert non vide  $\Delta$  de centre O inclus dans  $\Omega_z$  tel que

$$\forall Z \in \Delta, \qquad \frac{1}{1-2zZ+Z^2} = \sum_{n=0}^{+\infty} V_n(z) \, Z^n = \sum_{p=0}^{+\infty} \Bigl( Z^p \, (2z-Z)^p \Bigr)$$

**II.C.6)** En déduire que la fonction de la variable réelle x

$$G_z:\; x\mapsto \sum_{p=0}^{+\infty} \Bigl(x^p\,(2z-x)^p\Bigr)$$

admet un développement limité à tout ordre en 0. On le note

$$G_z(x) = \sum_{k=0}^n a_k x^k + o(x^n) \qquad x \to 0$$

Page 2/3

Déterminer les coefficients  $a_k$  pour  $k \in \mathbb{N}$ .

**II.C.7**) Retrouver alors la relation (I.1).

2013-09-27 18:18:59



## III Troisième partie

On note:

- $\alpha$  un réel tel que  $\alpha > -1/2$ ;
- E le  $\mathbb{R}$ -espace vectoriel des fonctions de classe  $\mathcal{C}^{\infty}$  sur [-1,1] et à valeurs réelles ;
- $F_n$  le sous-espace vectoriel de E des fonctions polynomiales de degré inférieur ou égal à n, où  $n \in \mathbb{N}$ ;
- $\varphi_{\alpha}$  l'application qui, à toute fonction y de E, associe la fonction

$$\varphi_{\alpha}(y) \, : \quad t \mapsto (1-t^2) \, y''(t) - (2\alpha+1) \, t \, y'(t)$$

•  $S_{\alpha}$  l'application de  $E \times E$  dans  $\mathbb R$  définie par

$$S_{\alpha}(f,g) = \int_{-1}^1 f(t)\,g(t)\left(1-t^2\right)^{\alpha-\,\frac{1}{2}}\,\mathrm{d}t$$

III.A –

- III.A.1) Vérifier que  $S_{\alpha}$  est un produit scalaire sur E.
- III.A.2) Justifier que  $\varphi_{\alpha}$  est un endomorphisme de E. Est-il injectif?
- III.A.3) Montrer que

$$\forall (f,g) \in E^2, \qquad S_{\alpha}(\varphi_{\alpha}(f),g) = S_{\alpha}(f,\varphi_{\alpha}(g))$$

On pourra calculer la dérivée de  $t\mapsto (1-t^2)^{\alpha+\frac{1}{2}}f'(t)$ .

 $III.B - Soit n \in \mathbb{N}.$ 

- III.B.1) Justifier que  $\varphi_{\alpha}$  induit sur  $F_n$  un endomorphisme et que cet endomorphisme induit (encore noté  $\varphi_{\alpha}$ ) est diagonalisable.
- III.B.2) Montrer qu'il existe une base de  $F_n$  constituée de vecteurs propres de  $\varphi_{\alpha}$  de degrés deux à deux distincts.
- III.B.3) Vérifier que deux vecteurs propres de  $\varphi_{\alpha}$  de degrés distincts sont associés à des valeurs propres distinctes.

On pourra s'intéresser au coefficient dominant d'un polynôme judicieux.

- III.B.4) Justifier que deux vecteurs propres de  $\varphi_{\alpha}$  de degrés distincts sont orthogonaux.
- **III.B.5)** Montrer que tout vecteur propre de  $\varphi_{\alpha}$  de degré supérieur ou égal à 1 s'annule au moins une fois dans l'intervalle ]-1,1[.
- III.C Dans cette partie, on suppose  $\alpha = 1$ .

On note  $\|\cdot\|$  la norme associée à  $S_1$ .

- III.C.1) Justifier que, pour tout  $k \in \mathbb{N}$ , il existe un unique polynôme vecteur propre de  $\varphi_1$  de degré k, de norme 1 et de coefficient dominant positif. On le note  $T_k$ .
- **III.C.2)** Soit  $t \in ]0, \pi[$ . Montrer que la fonction

$$H_t:\; x\mapsto \frac{1}{1-2x\,\cos(t)+x^2}$$

est développable en série entière sur ]-1,1[.

III.C.3) En déduire que

$$\forall n \in \mathbb{N}, \ \forall t \in \left]0, \pi\right[, \qquad V_n(\cos t) = \frac{\sin\left((n+1)t\right)}{\sin t}$$

- **III.C.4)** En dérivant deux fois la fonction  $t \mapsto (\sin t) V_n(\cos t) \sin((n+1)t)$ , montrer que pour tout  $n \in \mathbb{N}$ ,  $V_n$  est vecteur propre de  $\varphi_1$ .
- III.C.5) En déduire que, pour tout  $n \in \mathbb{N}$ ,  $V_n$  et  $T_n$  sont proportionnels. Expliciter le coefficient de proportionnalité.
- **III.C.6)** Pour  $n \in \mathbb{N}^*$ , déterminer les racines de  $T_n$ .



