

Mathématiques 1

Sées PC Sées

CONCOURS CENTRALE • SUPÉLEC

4 heures

Calculatrices autorisées

Notations et conventions

- $-\,\,$ Dans ce problème, n désigne un entier supérieur ou égal à 2.
- On confond vecteur de \mathbb{R}^n et matrice colonne correspondante, ce qui permet des écritures du type Ax où A est une matrice carrée réelle de taille n et x un élément de \mathbb{R}^n .
- Si f est une fonction de classe C^1 de \mathbb{R}^n dans \mathbb{R}^n et si x est un élément de \mathbb{R}^n , on note

$$f(x) = (f_1(x), f_2(x), ..., f_n(x))$$

ce qui, compte tenu de la convention précédente, s'écrit aussi

$$f(x) = \begin{pmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_n(x) \end{pmatrix}$$

Si i et j sont deux entiers de [1, n], la j-ème dérivée partielle de f_i en x est notée $D_j f_i(x)$ ou $\frac{\partial f_i}{\partial x_j}(x)$.

- Le déterminant d'une matrice carrée A est noté det(A).
- Avec les notations précédentes, on appelle matrice jacobienne de f en x et on note $J_f(x)$ la matrice carrée réelle de taille n dont le terme situé sur la i-ème ligne et la j-ème colonne est $\mathrm{D}_i f_i(x)$.
- $\ \ \text{On appelle jacobien de } f \ \text{en } x \ \text{et on note } \text{jac}_f(x), \ \text{le déterminant } \det(J_f(x)) \ \text{de la matrice jacobienne} \ J_f(x).$
- On appelle divergence de f en x et on note $\operatorname{div}_f(x)$, la trace de la matrice jacobienne $J_f(x)$. On a donc

$$\operatorname{div}_f(x) = \operatorname{tr}(J_f(x)) = \sum_{i=1}^n \operatorname{D}_i f_i(x)$$

Les quatre parties sont pour une large part indépendantes les unes des autres.

I Une interprétation du jacobien

I.A — Soit A une matrice carrée réelle de taille n et b un élément de \mathbb{R}^n . Soit f l'application de \mathbb{R}^n dans \mathbb{R}^n définie par

$$\forall x \in \mathbb{R}^n \quad f(x) = Ax + b$$

Montrer que f est de classe C^1 et préciser sa matrice jacobienne $J_f(x)$ en tout point x de \mathbb{R}^n .

I.B – Dans cette section, g désigne une fonction de classe C^1 de \mathbb{R}^n dans \mathbb{R} .

On fixe un élément $a = (a_1, a_2, ..., a_n)$ de \mathbb{R}^n .

Soit φ la fonction de $\mathbb R$ dans $\mathbb R$ définie par

$$\varphi(t) = g(ta) = g(ta_1, ta_2, ..., ta_n)$$

- **I.B.1)** Justifier que φ est de classe C^1 sur \mathbb{R} et, pour tout réel t, donner $\varphi'(t)$.
- I.B.2) En déduire qu'au voisinage de 0

$$g(ta) = g(0) + t(a_1D_1g(0) + a_2D_2g(0) + \dots + a_nD_ng(0)) + o(t)$$

 $\pmb{I.C}$ — Dans cette section, f désigne une fonction de classe C^1 de \mathbb{R}^n dans \mathbb{R}^n vérifiant f(0) = 0.

Pour t réel et j entier de [1, n], on note t_j l'élément (0, ..., 0, t, 0, ..., 0) de \mathbb{R}^n , le réel t étant situé au rang j.

I.C.1) On admettra que si des fonctions $\varphi_1, \varphi_2, ..., \varphi_n$ sont continues sur \mathbb{R} et à valeurs dans \mathbb{R}^n , alors la fonction Φ définie sur \mathbb{R} par :

$$\Phi(t) = \det(\varphi_1(t), \varphi_2(t), ..., \varphi_n(t))$$

est continue sur \mathbb{R} .

En utilisant la question I.B.2 et la multilinéarité du déterminant, montrer qu'au voisinage de 0

$$\det(f(t_1),f(t_2),...,f(t_n))=t^n\operatorname{jac}_f(0)+\operatorname{o}(t^n)$$

I.C.2) En déduire que

$$\lim_{t \to 0} \frac{\det(f(t_1),...,f(t_n))}{\det(t_1,...,t_n)} = \mathrm{jac}_f(0)$$

I.C.3) Dans le cas n = 2 (respectivement n = 3), donner une interprétation géométrique de la valeur absolue du jacobien de f en 0 à l'aide d'aires de parallélogrammes (respectivement volumes de parallélépipèdes).

II Une interprétation de la divergence dans un cas particulier

On désigne par A une matrice réelle carrée de taille 2 et on pose, pour tout x dans \mathbb{R}^2 , f(x) = Ax.

II.A – Pour x dans \mathbb{R}^2 , exprimer $\operatorname{div}_f(x)$ à l'aide de A seulement.

Pour a dans \mathbb{R}^2 , on note $u_a(t)$ la solution sur \mathbb{R} du problème de Cauchy

$$X' = AX, \qquad X(0) = a$$

Autrement dit, u_a est l'unique fonction C^1 de $\mathbb R$ dans $\mathbb R$ telle que $u_a(0)=a$ et, pour tout réel $t,\,u_a'(t)=Au_a(t)$.

II.B – Dans cette section et la suivante, on suppose A diagonale de la forme

$$A=\operatorname{diag}(\lambda_1,\lambda_2)=\begin{pmatrix}\lambda_1 & 0 \\ 0 & \lambda_2\end{pmatrix}$$

- **II.B.1)** Que vaut $u_a(t)$?
- II.B.2) Soit a et b deux éléments de \mathbb{R}^2 et soit t un réel. Montrer que

$$\det(u_a(t), u_b(t)) = \exp(t \operatorname{div}_f(a)) \det(u_a(0), u_b(0))$$

II.B.3) Utiliser le résultat précédent pour interpréter le signe de $\operatorname{div}_f(a)$ en termes de sens de variation de l'aire d'un certain parallélogramme comme fonction de t.

II.C - Exemple

On suppose toujours que $A = diag(\lambda_1, \lambda_2)$.

- **II.C.1)** On pose $a=(a_1,a_2)$ et $u_a(t)=(x_1(t),x_2(t))$. On suppose que $\lambda_1\neq 0$ et $a_1>0$. Déterminer une fonction θ_a telle que $x_2(t)=\theta_a(x_1(t))$ pour tout réel t.
- **II.C.2)** Dans cette question, a = (2, 1) et b = (1, 2).

Pour chacun des cas suivants, illustrer sur une même figure les courbes représentatives des fonctions θ_a , θ_b et θ_{a+b} , ainsi que les parallélogrammes de sommets $(0,0),\,u_a(t),\,u_b(t)$ et $u_a(t)+u_b(t)$ pour t=0 et une valeur de t strictement positive.

- a) $\lambda_1 = 1$ et $\lambda_2 = 2$.
- b) $\lambda_1 = 1$ et $\lambda_2 = -2$.
- c) $\lambda_1 = 1 \text{ et } \lambda_2 = -1.$

II.D -

2014-02-08 18:10:56

II.D.1) Reprendre les questions II.B.1 et II.B.2 dans le cas où A est triangulaire de la forme

$$A = \begin{pmatrix} \lambda & \mu \\ 0 & \lambda \end{pmatrix}$$

II.D.2) Montrer que la relation

$$\det(u_a(t),u_b(t)) = \exp(t\operatorname{div}_f(a))\det(u_a(0),u_b(0))$$

est valable lorsque la matrice A possède un polynôme caractéristique scindé sur \mathbb{R} .

II.D.3) Étendre ce résultat au cas d'une matrice réelle 2×2 quelconque.

III Matrice jacobienne symétrique, antisymétrique

Dans le début de cette partie f est une fonction de classe C^2 de \mathbb{R}^n dans lui-même. Si x est un élément de \mathbb{R}^n , on note toujours

$$f(x) = (f_1(x), f_2(x), ..., f_n(x)) = \begin{pmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_n(x) \end{pmatrix}$$

Si i, j et k sont trois entiers de [1, n], la dérivée partielle seconde de f_k en x par rapport aux variables x_i et x_j est notée $D_{i,j}f_k(x)$ ou $\frac{\partial^2 f_k}{\partial x_i \partial x_j}(x)$, ou encore $f_{i,j,k}(x)$.

III.A – Justifier que, pour tout x dans \mathbb{R}^n et tous i, j et k dans [1, n], on a $f_{i,j,k}(x) = f_{j,i,k}(x)$.

III.B – Dans cette section, on suppose que la matrice jacobienne $J_f(x)$ est antisymétrique pour tout x dans \mathbb{R}^n

III.B.1) Montrer que pour tout x dans \mathbb{R}^n , et tous i, j et k dans [1, n], $f_{i,j,k}(x) = -f_{i,k,j}(x)$.

III.B.2) En déduire que, pour tout x dans \mathbb{R}^n et tous i, j et k dans [1, n], on a $f_{i,j,k}(x) = 0$.

III.B.3) Montrer qu'il existe une matrice carrée réelle A de taille n et un élément b de \mathbb{R}^n tels que pour tout x dans \mathbb{R}^n , f(x) = Ax + b.

Justifier que A est antisymétrique.

III.B.4) Soit f une fonction de classe C^2 de \mathbb{R}^n dans lui-même. À quelle condition nécessaire et suffisante portant sur f, la matrice jacobienne $J_f(x)$ est-elle antisymétrique pour tout x dans \mathbb{R}^n ?

III.C – Maintenant f est une fonction de classe C^1 de \mathbb{R}^n dans lui-même.

Montrer que la matrice jacobienne $J_f(x)$ est symétrique pour tout x dans \mathbb{R}^n si et seulement si il existe g de classe C^2 sur \mathbb{R}^n à valeurs dans \mathbb{R} telle que

$$\forall x \in \mathbb{R}^n, \ \forall i \in [1, n], \ f_i(x) = D_i g(x)$$

On pourra considérer l'application g définie par $g(x)=\sum_{i=1}^n x_i \int_0^1 f_i(tx) \;\mathrm{d}t$ et on exprimera $\mathrm{D}_i g(x)$ sous forme d'une seule intégrale.

IV Matrice jacobienne orthogonale

Dans cette partie, f est une fonction de classe C^2 de \mathbb{R}^n dans lui-même.

On considère la proposition

 (\mathcal{P}) Pour tout x de \mathbb{R}^n , la matrice jacobienne $J_f(x)$ de f est orthogonale.

Pour x dans \mathbb{R}^n et i, j, k dans [1, n], on note

$$\alpha_{i,j,k}(x) = \sum_{p=1}^n \frac{\partial f_p}{\partial x_i}(x) \cdot \frac{\partial^2 f_p}{\partial x_i \partial x_k}(x)$$

IV.A – On suppose (\mathcal{P}) .

IV.A.1) Montrer que pour tous i, j et k de [1, n], $\alpha_{i,j,k} = \alpha_{i,k,j} = -\alpha_{k,j,i}$.

IV.A.2) En déduire que pour tous i, j et k de [1, n], $\alpha_{i,j,k} = 0$.

IV.A.3) Montrer qu'il existe une matrice orthogonale A et un élément b de \mathbb{R}^n tels que, pour tout x de \mathbb{R}^n , f(x) = Ax + b

On pourra interpréter les relations $\alpha_{i,j,k}=0$ à l'aide de produits matriciels.

IV.B – Soit f une fonction de classe C^2 de \mathbb{R}^n dans lui-même. À quelle condition nécessaire et suffisante portant sur f, la proposition (\mathcal{P}) est-elle réalisée ?

IV.C – Si g est une fonction de classe C^2 de \mathbb{R}^n dans \mathbb{R} , on note $\Delta_g(x) = \sum_{i=1}^n \frac{\partial^2 g}{\partial x_i^2}(x)$ (laplacien de g en x).

Montrer que (\mathcal{P}) est équivalente à la proposition

(Q) Pour toute fonction g de classe C^2 de \mathbb{R}^n dans \mathbb{R} , $\Delta_{g \circ f} = (\Delta_g) \circ f$.

