SESSION 2014 PSIM206

EPREUVE SPECIFIQUE - FILIERE PSI

MATHEMATIQUES 2

Durée : 4 heures

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont autorisées

Le sujet comporte 4 pages.

Notations:

- \mathbb{N} désigne l'ensemble des entiers naturels et \mathbb{R} celui des nombres réels. Pour tout entier $n \in \mathbb{N}$, on note [0, n] l'ensemble $\{p \in \mathbb{N}; 0 \le p \le n\}$.
- On note $\mathbb{R}[X]$ l'espace vectoriel des polynômes à coefficients réels.
- Pour tout entier n, $\mathbb{R}_n[X]$ est l'espace vectoriel des polynômes de degré inférieur ou égal à n.
- $\mathcal{M}_n(\mathbb{R})$ désigne l'ensemble des matrices $n \times n$ à coefficients réels.

Pour tout polynôme $P \in \mathbb{R}[X]$, on note encore P la fonction polynomiale associée définie sur \mathbb{R} . On rappelle qu'un polynôme P est dit unitaire si le coefficient du terme de plus haut degré est égal à 1. **Objectifs :** on se propose d'étudier une famille de polynômes et leurs racines. Dans une première partie, on introduit une famille de polynômes (P_n) vecteurs propres d'un endomorphisme de $\mathbb{R}_n[X]$. L'objet de la seconde partie est l'étude, dans un cas particulier, d'une famille de polynômes orthogonaux. Enfin, dans la dernière partie, on étudie les valeurs propres d'une matrice pour démontrer une propriété des racines de ces polynômes.

Partie I

Etude d'un endomorphisme

Dans cette partie, on pose:

$$A(X) = X^2 - 1$$
 , $B(X) = 2X$.

I.1 Une application linéaire

On considère l'application $\Phi: \mathbb{R}[X] \to \mathbb{R}[X]$ définie par :

$$\Phi(P) = AP'' + BP'.$$

- **I.1.1** Montrer que, pour tout entier n, la restriction, notée Φ_n de Φ à $\mathbb{R}_n[X]$, définit un endomorphisme de $\mathbb{R}_n[X]$.
- **I.1.2** Montrer brièvement que :

$$(P,Q) \mapsto \langle P,Q \rangle = \int_{-1}^{1} P(t)Q(t)dt$$

définit un produit scalaire sur $\mathbb{R}[X]$. Vérifier que $\langle XP,Q\rangle=\langle P,XQ\rangle$.

I.2 Une base de vecteurs propres

I.2.1 Soient P et Q deux polynômes. Déterminer deux polynômes U et V tels que :

$$\langle \Phi(P), Q \rangle - \langle P, \Phi(Q) \rangle = \int_{-1}^{1} \left(A(t)U(t) + A'(t)V(t) \right) dt.$$

En déduire que pour tout entier n, l'endomorphisme Φ_n est auto-adjoint.

- **I.2.2** Ecrire la matrice de $\Phi_n : \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ dans la base canonique $\{1, X, \dots, X^n\}$ et en déduire les valeurs propres de Φ_n .
- **I.2.3** Montrer qu'il existe une base (P_0, \dots, P_n) de $\mathbb{R}_n[X]$ formée de vecteurs propres de Φ_n unitaires tels que $\deg P_k = k$ pour tout $k \in [0, n]$.
- **I.2.4** Montrer que si $i \neq k$ alors $\langle P_i, P_k \rangle = 0$. En déduire que P_n est dans l'orthogonal de $\mathbb{R}_{n-1}[X]$.
- **I.2.5** Expliciter les polynômes P_0 , P_1 , P_2 et P_3 , puis déterminer leurs racines.

Partie II

Etude des racines de ces polynômes

II.1 Une relation de récurrence Soit $n \ge 2$ un entier.

Justifier l'existence d'un réel λ_n tel que :

$$P_n - XP_{n-1} + \lambda_n P_{n-1} = S_n \in \mathbb{R}_{n-2}[X].$$

II.2 Dans cette question, on suppose $n \ge 3$

En calculant $\langle XP_{n-1}, P_k \rangle$, pour tout polynôme $P_k \in \mathbb{R}_k[X]$ (avec $k \leq n-3$), montrer que $\langle S_n, P_k \rangle = 0$.

II.3 Montrer que pour tout entier $n \geq 2$, il existe $\lambda_n \in \mathbb{R}$ et $\mu_n > 0$, tels que :

$$P_n = (X - \lambda_n)P_{n-1} - \mu_n P_{n-2}.$$

Calculer de façon directe λ_2 , μ_2 , λ_3 et μ_3 .

II.4 Montrer que pour tout entier $k \in \mathbb{N}^*$, on a :

$$\int_{-1}^{1} P_k(t)dt = 0.$$

En déduire que P_k admet au moins une racine d'ordre impair dans]-1,1[.

II.5 Soient x_1, \dots, x_k , les racines distinctes d'ordre impair de P_n dans]-1,1[et soit Q le polynôme $\prod_{i=1}^k (X-x_i)$. En considérant $Q\cdot P_n$, montrer que P_n a n racines simples dans]-1,1[(on pourra raisonner par l'absurde et calculer $\int_{-1}^1 Q(t)P_n(t)\,dt$ en supposant k< n).

Partie III

Etude d'une matrice

III.1 Etude d'un déterminant

Pour tout entier n > 0, on considère la matrice :

$$M_{n} = \begin{pmatrix} 0 & \sqrt{\mu_{2}} & 0 & \cdots & 0 & 0 \\ \sqrt{\mu_{2}} & \lambda_{2} & \sqrt{\mu_{3}} & \cdots & 0 & 0 \\ 0 & \sqrt{\mu_{3}} & \lambda_{3} & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \lambda_{n-1} & \sqrt{\mu_{n}} \\ 0 & 0 & 0 & \cdots & \sqrt{\mu_{n}} & \lambda_{n} \end{pmatrix} \in \mathcal{M}_{n}(\mathbb{R}).$$

- **III.1.1** On pose $Q_0(X) = 1$ et, pour tout entier n > 0, $Q_n(X) = \det(XI_n M_n)$. Calculer $Q_1(X)$. Exprimer $Q_n(X)$ en fonction de $Q_{n-1}(X)$ et de $Q_{n-2}(X)$ pour n = 2 et pour n = 3.
- **III.1.2** Déterminer, pour tout entier $n \geq 3$, une relation entre $Q_n(X)$, $Q_{n-1}(X)$ et $Q_{n-2}(X)$.
- III.1.3 En déduire que toutes les racines de P_n sont réelles (résultat déjà démontré en II.5).
- III.2 Valeurs propres de M_n On considère M_n comme la matrice d'un endomorphisme u de \mathbb{R}^n , muni du produit scalaire usuel (noté $(x,y) \mapsto \langle x \mid y \rangle$), dans la base canonique. On note $\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_{n-1} \leq \alpha_n$, les valeurs propres de M_n et $(e_1, e_2, \cdots, e_{n-1}, e_n)$ une base orthonormée de vecteurs propres de M_n , tels que $u(e_i) = \alpha_i e_i$.
- **III.2.1** Soit F_i le sous-espace vectoriel de \mathbb{R}^n engendré par (e_1, e_2, \dots, e_i) . Montrer que sur la sphère unité de F_i , l'application $x \mapsto \langle u(x) \mid x \rangle$ atteint un maximum et le calculer.
- **III.2.2** Soit G_i le sous-espace vectoriel de \mathbb{R}^n engendré par (e_i, \dots, e_n) . Montrer que sur la sphère unité de G_i , l'application $x \mapsto \langle u(x) \mid x \rangle$ atteint un minimum que l'on calculera.
- III.3 Une expression des valeurs propres Soit F un sous-espace vectoriel de \mathbb{R}^n de dimension i. Montrer que $G_i \cap F \neq \{0\}_{\mathbb{R}^n}$ et que si $x \in G_i \cap F$ vérifie ||x|| = 1, alors $\langle u(x) \mid x \rangle \geq \alpha_i$. En déduire que :

$$\alpha_i = \min_{\substack{F \text{ sev } de \ \mathbb{R}^n \\ \dim F = i}} \left\{ \max_{x \in F, ||x|| = 1} \langle u(x) \mid x \rangle \right\}.$$

III.4 Une démonstration analogue montre, ce que l'on admettra, que :

$$\alpha_i = \max_{\substack{Fsev \ de \ \mathbb{R}^n \\ \dim F = n+1-i}} \left\{ \min_{x \in F, ||x|| = 1} \langle u(x) \mid x \rangle \right\}.$$

- III.4.1 On note $\beta_1 \leq \beta_2 \leq \cdots \leq \beta_{n-2} \leq \beta_{n-1}$ les valeurs propres de M_{n-1} . En utilisant ce qui précède, montrer que pour tout $i \in \{1, \dots, n-1\}$, on a $\beta_i \geq \alpha_i$ et $\alpha_{i+1} \geq \beta_i$.
- **III.4.2** En déduire que :

$$\alpha_1 \le \beta_1 \le \alpha_2 \le \dots \le \alpha_{n-1} \le \beta_{n-1} \le \alpha_n.$$

III.4.3 Soit n un entier strictement positif. On sait que P_n admet n racines distinctes (x_1, \dots, x_n) rangées par ordre croissant dans l'intervalle]-1,1[. Montrer que pour tout $i \in \{1, \dots, n-1\}$, le polynôme P_{n-1} admet une racine dans chaque intervalle $[x_i, x_{i+1}]$.

fin de l'énoncé