

Mathématiques 2

PSI

2013

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrices autorisées

Exponentielle de matrices

Le but du sujet est d'étudier l'exponentielle de matrices, réelles ou complexes.

Dans tout le sujet, p désigne un entier naturel non nul.

Si \mathbb{K} désigne un corps, \mathbb{R} ou \mathbb{C} , on adopte les notations suivantes :

- $-\mathbb{K}[X]$ est l'ensemble des polynômes à coefficients dans \mathbb{K} .
- $-\mathbb{K}_p[X]$ est l'ensemble des polynômes à coefficients dans \mathbb{K} de degré au plus p.
- $-M_p(\mathbb{K})$ est l'ensemble des matrices carrées d'ordre p à coefficients dans \mathbb{K} .
- I_p est la matrice identité de $M_p(\mathbb{K})$.
- Une matrice $A \in M_p(\mathbb{K})$ est dite antisymétrique si ${}^t A = -A$.
- $GL_p(\mathbb{K})$ est l'ensemble des matrices inversibles de $M_p(\mathbb{K})$.
- On note tr l'application trace et det l'application déterminant.
- $-O_p(\mathbb{R})$ est l'ensemble des matrices orthogonales à coefficients dans \mathbb{R} et d'ordre p.
- $-SO_p(\mathbb{R})$ est l'ensemble des matrices de $O_p(\mathbb{R})$ de déterminant 1.
- On munit $M_p(\mathbb{K})$ de la norme quadratique $\|\cdot\|_2$ définie par

$$\forall A = (a_{i,j})_{1 \leqslant i,j \leqslant p} \in M_p(\mathbb{K}), \ \|A\|_2 = \sqrt{\sum_{i=1}^p \sum_{j=1}^p |a_{ij}|^2} = \sqrt{\operatorname{tr}({}^t\bar{A}A)}$$

et on munit $M_p(\mathbb{K})$ de la structure d'espace vectoriel normé associée.

- Si A est une matrice de $M_p(\mathbb{K})$, on note u_A l'endomorphisme de \mathbb{K}^p canoniquement associé à la matrice A et, par abus de notation, $\operatorname{Ker} A = \operatorname{Ker} u_A$.
- Si A est une matrice de $M_p(\mathbb{K})$ on définit, lorsque la limite existe,

$$E(A) = \lim_{n \to \infty} \left(I_p + \frac{1}{n} A \right)^n$$

- Lorsque $\mathbb{K} = \mathbb{R}$ on munit \mathbb{R}^p de sa structure canonique d'espace euclidien.

I Question préliminaire

Soit $z \in \mathbb{C}$.

On pose z = a + ib, où $a, b \in \mathbb{R}$.

I.A – Soit $n \in \mathbb{N}^*$. Déterminer le module et un argument de $\left(1 + \frac{z}{n}\right)^n$ en fonction de a, b et n.

 $\boldsymbol{I.B}$ – En déduire que

$$\lim_{n \to \infty} \left(1 + \frac{z}{n} \right)^n = e^z$$

II Matrices antisymétriques réelles d'ordre 2 ou 3

II.A - Matrices antisymétriques d'ordre 2

Soit $n \in \mathbb{N}^*$. Soit $A \in M_2(\mathbb{R})$ une matrice antisymétrique. On pose $A = \begin{pmatrix} 0 & -\alpha \\ \alpha & 0 \end{pmatrix}$ où $\alpha \in \mathbb{R}$.

II.A.1) Déterminer un nombre $\beta_n \in \mathbb{R}_+^*$ tel que

$$\frac{1}{\beta_n} \left(I_2 + \frac{1}{n} A \right) \in SO_2(\mathbb{R})$$

II.A.2) Déterminer un nombre réel θ_n tel que

$$\frac{1}{\beta_n} \left(I_2 + \frac{1}{n} A \right) = \begin{pmatrix} \cos \theta_n & -\sin \theta_n \\ \sin \theta_n & \cos \theta_n \end{pmatrix}$$

II.A.3) En déduire que E(A) existe et que c'est une matrice de rotation, dont on précisera l'angle.

II.B - Matrices antisymétriques d'ordre 3

II.B.1) Soit $B \in M_3(\mathbb{R})$ antisymétrique.

- a) Montrer que $\det B = 0$.
- b) Montrer que $(\operatorname{Ker} u_B)^{\perp}$ est stable par u_B .
- c) En déduire que B est de rang 0 ou 2.

II.B.2) Montrer qu'il existe une matrice P de $O_3(\mathbb{R})$ et un réel β tels que

$$B = P \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\beta \\ 0 & \beta & 0 \end{pmatrix} P^{-1}$$

- II.B.3) Montrer que lorsque l'égalité de la question précédente est vérifiée, on a $|\beta| = \frac{\|B\|_2}{\sqrt{2}}$.
- II.B.4) Montrer que E(B) existe et est une matrice de rotation. Préciser la valeur de son angle non orienté en fonction de $||B||_2$.

III Exponentielle de matrices diagonalisables

III.A - Cas des matrices diagonales

Soit $D \in M_p(\mathbb{K})$ une matrice diagonale.

- **III.A.1)** Montrer que E(D) existe et que $E(D) \in GL_p(\mathbb{C})$.
- **III.A.2)** Montrer qu'il existe un polynôme $Q \in \mathbb{C}[X]$ tel que Q(D) = E(D).
- III.A.3) Soit $(\Delta, +)$ le sous-groupe additif de $M_p(\mathbb{R})$ formé par les matrices diagonales.

Montrer que E définit un morphisme de groupe de $(\Delta, +)$ dans $(GL_p(\mathbb{R}), \times)$.

III.B – Existence et propriétés de E(A) lorsque A est diagonalisable

Soit $A \in M_p(\mathbb{K})$ une matrice diagonalisable.

III.B.1) Montrer que E(A) existe.

III.B.2) Montrer que $det(E(A)) = e^{tr(A)}$.

III.B.3) Soit $x \in \mathbb{C}$.

Montrer que $E(xI_p + A)$ existe et que

$$E(xI_p + A) = e^x E(A)$$

III.C - Exponentielle de la somme

Soient $A, B \in M_p(\mathbb{K})$ deux matrices diagonalisables. On suppose que A et B commutent.

III.C.1) Montrer qu'il existe $P \in GL_p(\mathbb{C})$ telle que $P^{-1}AP$ et $P^{-1}BP$ soient diagonales.

On étudiera les restrictions de u_B aux sous-espaces propres de u_A .

III.C.2) En déduire que E(A+B) existe et que E(A+B)=E(A)E(B)=E(B)E(A).

IV Exponentielle de matrices nilpotentes

Soit $A \in M_p(\mathbb{C})$ et $k \in \mathbb{N}^*$ tel que $A^k = 0$ et $A^{k-1} \neq 0$ (on dit que A est nilpotente d'ordre k). Soit également $B \in M_p(\mathbb{C})$.

IV.A -

IV.A.1) Montrer que, pour tout entier j tel que $1 \le j \le k$, Ker A^{j-1} est inclus strictement dans Ker A^j .

IV.A.2) En déduire que $k \leq p$.

IV.B — Montrer que E(A) existe. Proposer une procédure Maple ou Mathematica prenant en entrée une matrice triangulaire supérieure stricte A et renvoyant la valeur de E(A).

IV.C – Montrer qu'il existe un polynôme $Q \in \mathbb{C}[X]$ tel que Q(A) = E(A).

IV.D – Soit $B \in M_p(\mathbb{C})$. On suppose que A et B commutent et que E(B) existe.

On admet que, pour tout entier i compris entre 1 et p,

$$\lim_{n \to \infty} \left(I_p + \frac{1}{n} B \right)^n = \lim_{n \to \infty} \left(I_p + \frac{1}{n} B \right)^{n-i}$$

Montrer que E(A+B) existe et que E(A+B)=E(A)E(B).

IV.E - Soit $x \in \mathbb{C}$.

Montrer que $E(xI_p + A)$ existe et que $E(xI_p + A) = e^x E(A)$.

IV.F – Montrer que $E(A) - I_p$ est nilpotente.

V Cas général

Soit $A \in M_p(\mathbb{C})$ et $n \in \mathbb{N}^*$. On note

$$P_n(X) = \left(1 + \frac{X}{n}\right)^n \in \mathbb{C}[X]$$

et χ_A le polynôme caractéristique de A défini par

$$\chi_A(X) = \det(A - XI_p)$$

V.A - Liens avec le polynôme caractéristique

V.A.1) Montrer qu'il existe un unique couple $(Q_n, R_n) \in \mathbb{C}[X] \times \mathbb{C}_{p-1}[X]$ tel que

$$P_n = Q_n \chi_A + R_n$$

V.A.2) Montrer que E(A) existe si et seulement si $\lim_{n\to\infty} R_n(A)$ existe.

V.A.3) Soient $k \in \mathbb{N}^*$ et $\lambda_1, \lambda_2, ..., \lambda_k$ les racines de χ_A deux à deux distinctes, dont on note $n_1, n_2, ..., n_k$ les ordres de multiplicité respectifs.

Pour tout entier q compris entre 1 et p, on note J_q la matrice de $M_q(\mathbb{C})$ dont tous les coefficients sont nuls sauf ceux situés juste au-dessus de la diagonale qui valent 1.

Montrer que, pour tout $x \in \mathbb{C}$, pour tout entier q compris entre 1et p, la famille $\{(xI_q + J_q)^i, 0 \le i \le q - 1\}$ est libre.

V.A.4) Soit $B = \text{diag}\{\lambda_1 I_{n_1} + J_{n_1}, \dots, \lambda_k I_{n_k} + J_{n_k}\}$ la matrice diagonale par blocs définie par

$$B = \begin{pmatrix} \lambda_1 I_{n_1} + J_{n_1} & 0 & \dots & 0 \\ 0 & \lambda_2 I_{n_2} + J_{n_2} & \dots & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_k I_{n_k} + J_{n_k} \end{pmatrix}$$

Montrer que $\chi_B = \chi_A$.

V.B – Convergence de E(A)

V.B.1) Soit i un entier ≥ 1 .

Montrer que

$$B^{i} = \begin{pmatrix} (\lambda_{1}I_{n_{1}} + J_{n_{1}})^{i} & 0 & \dots & 0 \\ 0 & (\lambda_{2}I_{n_{2}} + J_{n_{2}})^{i} & \dots & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & (\lambda_{k}I_{n_{k}} + J_{n_{k}})^{i} \end{pmatrix}$$

V.B.2) Soit P un polynôme annulateur non nul de la matrice B.

- a) Montrer que le degré de P est $\geqslant p$.
- b) En déduire que la famille $\{B^i, 0 \le i \le p-1\}$ est libre.
- **V.B.3**) Montrer que $\lim_{n\to\infty} P_n(B)$ existe.
- **V.B.4**) En déduire que E(A) existe.

• • • FIN • • •