

Mathématiques 2

PC

2013

CONCOURS CENTRALE • SUPÉLEC

4 heures

Calculatrices autorisées

Matrices directement orthogonalement semblables et cercle propre

Pour n entier supérieur ou égal à 2, on note $\mathcal{M}_n(\mathbb{R})$ l'espace vectoriel des matrices carrées à coefficients réels à n lignes, et $\mathrm{GL}_n(\mathbb{R})$ l'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbb{R})$.

On rappelle qu'une matrice M de $\mathcal{M}_n(\mathbb{R})$ est dite orthogonale si ${}^t M M = I_n$ où ${}^t M$ désigne la transposée de M et où I_n est la matrice identité. On note $\mathrm{O}(n)$ l'ensemble des matrices orthogonales de $\mathcal{M}_n(\mathbb{R})$, et $\mathrm{SO}(n)$ le sous-ensemble de $\mathrm{O}(n)$ constitué des matrices orthogonales de déterminant 1. On rappelle que $(\mathrm{O}(n), \times)$ est un sous-groupe de $(\mathrm{GL}_n(\mathbb{R}), \times)$ et que $(\mathrm{SO}(n), \times)$ est un sous-groupe de $(\mathrm{O}(n), \times)$. Le premier est appelé groupe orthogonal, le second groupe spécial orthogonal.

Pour $A \in \mathcal{M}_n(\mathbb{R})$, on note f_A l'endomorphisme canoniquement associé à A, c'est-à-dire l'unique endomorphisme de \mathbb{R}^n dont la matrice dans la base canonique de \mathbb{R}^n est A.

Si λ est une valeur propre de A, on notera respectivement $E_{\lambda}(A)$ et $E_{\lambda}(f_A)$ les sous-espaces propres associés à λ , pour A et f_A respectivement.

On munit \mathbb{R}^2 de sa structure euclidienne orientée canonique, de sorte que la base canonique est orthonormée directe. Le produit scalaire est noté $(\cdot|\cdot)$ et la norme euclidienne associée est notée $\|\cdot\|$.

Pour tout couple (u,v) de vecteurs non nuls de \mathbb{R}^2 , on dit que θ est une mesure de l'angle orienté $\widehat{(u,v)}$ lorsque $\cos\theta = \frac{(u|v)}{\|u\| \|v\|}$ et $\sin\theta = \frac{[u,v]}{\|u\| \|v\|}$, où $[\cdot,\cdot]$ désigne le produit mixte, c'est-à-dire le déterminant dans n'importe quelle base orthonormée directe.

On appelle similitude de rapport k tout endomorphisme f de \mathbb{R}^2 pour lequel il existe un réel k > 0 et une matrice M de O(2) tels que la matrice de f dans la base canonique de \mathbb{R}^2 soit égale à kM.

I Le groupe orthogonal en dimension 2

I.A - Les rotations planes

- **I.A.1)** Montrer que $A \in SO(2)$ si et seulement si il existe un réel t tel que $A = R_t$ avec $R_t = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$.
- **I.A.2)** Écrire une procédure ou une fonction dans le langage Maple ou Mathematica qui prend en entrée un quadruplet (a,b,c,d) de réels et qui renvoie, lorsque c'est possible, un réel t tel que $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = R_t$ et un message d'erreur dans le cas contraire.
- **I.A.3)** Vérifier que l'application qui, à tout réel t, associe la matrice R_t , est un morphisme surjectif du groupe $(\mathbb{R}, +)$ sur le groupe $(SO(2), \times)$.

Ce morphisme est-il bijectif?

I.A.4) Montrer que, pour tout t de \mathbb{R} et tout u non nul de \mathbb{R}^2 , t est une mesure de l'angle orienté $(u, \rho_t(u))$, où ρ_t est l'endomorphisme (la rotation d'angle t) f_{R_t} canoniquement associé à R_t .

Pour tout $k \in \mathbb{R}_+^*$ et tout $t \in \mathbb{R}$, l'endomorphisme $k\rho_t$ est appelé similitude directe de rapport k et d'angle t.

I.B - Matrices semblables et sous-espaces propres

Soit $A, B \in \mathcal{M}_n(\mathbb{R})$ et $P \in \mathrm{GL}_n(\mathbb{R})$ telles que $B = P^{-1}AP$.

- **I.B.1)** Montrer que f_A et f_B ont les mêmes valeurs propres.
- **I.B.2)** Montrer que si λ est une valeur propre de A, alors $E_{\lambda}(f_A) = f_P(E_{\lambda}(f_B))$.

I.C - Les réflexions planes

I.C.1) On note
$$K_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
.

Vérifier que l'endomorphisme $\sigma_0 = f_{K_2}$ est une réflexion (symétrie orthogonale par rapport à une droite du plan) dont on précisera les éléments propres.

- **I.C.2)** Pour tout réel t, préciser l'endomorphisme σ_t canoniquement associé à $R_t^{-1} K_2 R_t$ et en particulier ses éléments propres.
- **I.C.3)** Montrer, que pour toute matrice A de O(2) telle que det(A) = -1, il existe un réel t tel que

$$A = \begin{pmatrix} \cos(2t) & \sin(2t) \\ \sin(2t) & -\cos(2t) \end{pmatrix}$$

II Matrices directement orthogonalement semblables

Pour A, B dans $\mathcal{M}_n(\mathbb{R})$, on dit que A est orthogonalement semblable à B (ce que l'on pourra abréger en : A os B) s'il existe une matrice P de O(n) telle que $B = P^{-1}AP$ et on dit que A est directement orthogonalement semblable à B (en abrégé : A dos B) s'il existe une matrice P de SO(n) telle que $B = P^{-1}AP$.

II.A - Propriétés fondamentales de la similitude

II.A.1) Montrer que pour toute A de $\mathcal{M}_n(\mathbb{R})$ on a A dos A, que pour tout (A, B) de $\mathcal{M}_n(\mathbb{R})^2$ si A dos B alors B dos A et que pour tout (A, B, C) de $\mathcal{M}_n(\mathbb{R})^3$ si A dos B et B dos C alors A dos C.

On dira donc in différemment que A est directement orthogonalement semblable à B ou que A et B sont directement orthogonalement semblables.

On a les mêmes propriétés pour la relation de similitude orthogonale entre deux matrices carrées de même taille et on ne demande pas de refaire ici les vérifications.

- II.A.2) Quelles sont les matrices directement orthogonalement semblables à αI_n pour α réel?
- II.A.3) Quelles sont les matrices directement orthogonalement semblables à A si A appartient à SO(2)?
- II.A.4) Quelles sont les matrices directement orthogonalement semblables à K_2 ?

II.B - Comparaison des relations de similitude.

Avec $SO(n) \subset O(n) \subset GL_n(\mathbb{R})$, si deux matrices sont directement orthogonalement semblables alors elles sont orthogonalement semblables alors elles sont semblables.

- **II.B.1)** Montrer que $\begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$ et $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ sont directement orthogonalement semblables.
- **II.B.2)** Montrer que $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ et $\begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix}$ sont semblables mais ne sont pas orthogonalement semblables.
- **II.B.3)** Montrer que $\begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix}$ et sa transposée sont orthogonalement semblables mais ne sont pas directement orthogonalement semblables.

III Cercle propre d'une matrice carrée réelle d'ordre 2

III.A - Cercle propre

Pour $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ de $\mathcal{M}_2(\mathbb{R})$ et (x,y) de \mathbb{R}^2 , on note $\varphi_A(x,y)$ le déterminant de la matrice $A(x,y)=\begin{pmatrix} a-x & b-y \\ c+y & d-x \end{pmatrix}$ et on considère \mathcal{CP}_A la courbe de \mathbb{R}^2 définie par l'équation : $\varphi_A(x,y)=0$.

- III.A.1) Vérifier que \mathcal{CP}_A est un cercle (on convient qu'un cercle peut être réduit à un point); on appellera \mathcal{CP}_A cercle propre de A. Préciser son centre C_A et son rayon r_A .
- III.A.2) Préciser, en fonction de A, le cardinal de l'intersection de \mathcal{CP}_A avec l'axe des abscisses $\mathbb{R} \times \{0\}$.
- III.A.3) Que représentent les solutions de l'équation $\varphi_A(x,0) = 0$ pour A?

Préciser le nombre de valeurs propres réelles de A selon la valeur de $\Delta_A = (a-d)^2 + 4bc$.

III.B - Deux cas particuliers

Soit $A \in \mathcal{M}_2(\mathbb{R})$.

- III.B.1) Comparer le cercle propre de A et celui de sa transposée.
- III.B.2) Déterminer une condition nécessaire et suffisante portant sur \mathcal{CP}_A pour que A soit symétrique.

III.B.3)

- a) Déterminer les matrices dont le cercle propre est de rayon nul et caractériser géométriquement leur endomorphisme canoniquement associé.
- b) Lorsque le cercle propre est réduit à son centre, préciser l'endomorphisme canoniquement associé, d'une part quand ce centre appartient au cercle trigonométrique (de centre l'origine O=(0,0) et de rayon 1) et d'autre part quand ce centre appartient à l'axe des abscisses.

c) Que peut-on dire de la matrice A et de f_A quand le cercle propre \mathcal{CP}_A est de rayon nul et de centre appartenant à l'axe des ordonnées $\{0\} \times \mathbb{R}$?

III.C - Cercle propre et matrices directement orthogonalement semblables

Montrer que deux matrices A et B de $\mathcal{M}_2(\mathbb{R})$ sont directement orthogonalement semblables si et seulement si elles ont le même cercle propre.

III.D - Rectangle propre

Pour $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ dans $\mathcal{M}_2(\mathbb{R})$ on considère les quatre points (éventuellement confondus) E = (d, -c), F = (a, b), G = (d, b) et H = (a, -c).

- **III.D.1)** Dans le cas où $A = \begin{pmatrix} 1 & 7 \\ -1 & 3 \end{pmatrix}$, représenter le cercle et le quadrilatère EHFG.
- III.D.2) Lorsque les quatre points E, F, G et H sont distincts montrer qu'ils sont les sommets d'un rectangle, que l'on appellera rectangle propre de A.
- III.D.3) Préciser les matrices pour lesquelles certains de ces points sont confondus, c'est-à-dire lorsque le rectangle est aplati.

III.E - Décomposition orthogonale d'un endomorphisme

Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 de $\mathcal{M}_2(\mathbb{R})$.

- **III.E.1)** Montrer qu'il existe un unique triplet (α, β, γ) de $\mathbb{R}^2 \times \mathbb{R}_+$ que l'on précisera, tel que A soit directement orthogonalement semblable à $\begin{pmatrix} \alpha + \gamma & -\beta \\ \beta & \alpha \gamma \end{pmatrix}$.
- III.E.2) Suivant les valeurs de (α, β, γ) préciser le nombre de valeurs propres réelles de A.
- III.E.3) Montrer que pour tout endomorphisme f de \mathbb{R}^2 , il existe des réels positifs ou nuls k et ℓ , une rotation plane ρ_t et une réflexion $\sigma_{t'}$ tels que $f = k\rho_t + \ell\sigma_{t'}$.
- **III.E.4)** Écrire une procédure ou une fonction dans le langage Maple ou Mathematica qui prend en entrée un quadruplet (a, b, c, d) de réels et qui renvoie un quadruplet (k, ℓ, t, t') tel que si $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ on ait $f_A = k\rho_t + \ell\sigma_{t'}$.

IV Cercle propre et réduction

IV.A - Cercle propre sécant avec l'axe des abscisses

Dans cette section on considère un cercle $\mathcal{C}(\Omega, r)$ de centre Ω et de rayon r non nul, sécant avec l'axe des abscisses.

On note L_1 et L_2 , de coordonnées respectives $(\lambda_1, 0)$ et $(\lambda_2, 0)$, avec $\lambda_1 < \lambda_2$, les deux points d'intersection de $\mathcal{C}(\Omega, r)$ avec l'axe des abscisses.

- Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice de cercle propre égal à $\mathcal{C}(\Omega, r)$. On conserve les notations E, F, G, H de III.D.
- IV.A.1) Montrer que A est diagonalisable.
- **IV.A.2)** Montrer que si $c \neq 0$, alors $(\overrightarrow{L_1E}, \overrightarrow{L_2E})$ est une base de \mathbb{R}^2 constituée de vecteurs propres pour f_A .
- **IV.A.3)** Lorsque c = 0, peut-on donner une base de vecteurs propres pour f_A à l'aide du cercle propre et du rectangle propre ?
- **IV.A.4)** Montrer que le carré du cosinus de l'angle de deux vecteurs propres de A associés à deux valeurs propres distinctes est déterminé par le cercle $\mathcal{C}(\Omega, r)$, et ne dépend pas du choix d'une matrice A de cercle propre égal $\mathcal{C}(\Omega, r)$ (on pourra, si on le juge utile, introduire la projection orthogonale de Ω sur l'axe des abscisses).

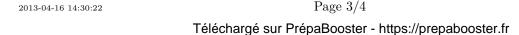
Qu'en est-il si A est symétrique ?

- IV.A.5) Caractériser géométriquement f_A lorsque $\Omega = O$, avec O = (0,0), et r = 1.
- **IV.A.6)** Caractériser géométriquement f_A lorsque \mathcal{CP}_A est le cercle de diamètre le segment [O, I] avec I = (1,0).

IV.B - Cercle propre tangent à l'axe des abscisses

Soit A une matrice de cercle propre égal à $\mathcal{C}(\Omega, r)$.

Dans cette section on considère un cercle $\mathcal{C}(\Omega, r)$ de centre Ω et de rayon r non nul, tangent à l'axe des abscisses. On appelle L, de coordonnées $(\lambda, 0)$, le point de contact de $\mathcal{C}(\Omega, r)$ avec l'axe des abscisses.



IV.B.1) La matrice A est-elle diagonalisable? Est-elle trigonalisable?

IV.B.2) Peut-on donner un vecteur propre à l'aide des points L, E, F, G et H?

IV.B.3) Que peut-on dire des matrices dont le cercle propre est tangent à l'axe des abscisses et de centre situé sur l'axe des ordonnées ?

IV.B.4) Montrer qu'il existe un unique réel non nul α tel que A soit directement orthogonalement semblable à la matrice $T_{\lambda,\alpha} = \begin{pmatrix} \lambda & \alpha \\ 0 & \lambda \end{pmatrix}$.

Préciser α à l'aide des éléments de la matrice A.

Où peut-on retrouver ce nombre sur le cercle propre?

IV.B.5) Montrer qu'il existe une base orthonormée directe (e_1, e_2) du plan telle que l'on ait, pour tout u de \mathbb{R}^2 , $f_A(u) = \lambda u + \alpha(e_2|u)e_1$.

IV.C - Cercle propre disjoint de l'axe des abscisses

Dans cette section on considère un cercle $\mathcal{C}(\Omega, r)$ de centre Ω et de rayon $r \geqslant 0$ disjoint de l'axe des abscisses.

On note K le projeté orthogonal de Ω sur l'axe des abscisses.

Soit A une matrice de cercle propre égal à $\mathcal{C}(\Omega, r)$.

IV.C.1) Existe-t-il une matrice P de $GL_2(\mathbb{R})$ telle que la matrice $P^{-1}AP$ soit diagonale?

Existe-t-il une matrice P de $\mathrm{GL}_2(\mathbb{R})$ telle que la matrice $P^{-1}AP$ soit triangulaire supérieure?

IV.C.2) Déterminer les points de $\mathcal{C}(\Omega, r)$ en lesquels la tangente à $\mathcal{C}(\Omega, r)$ contient K.

IV.C.3) Si U est l'un de ces points, exprimer les valeurs propres de A, considérée comme élément de $\mathcal{M}_2(\mathbb{C})$, à l'aide de l'abscisse de K et de la distance KU de K à U.

IV.D - Deux exemples

Dans cette section, on considère dans \mathbb{R}^2 un cercle $\mathcal{C}(\Omega, r)$ de centre Ω et de rayon r et $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice de cercle propre égal à $\mathcal{C}(\Omega, r)$.

IV.D.1) Dans cette question, $\Omega = (\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^*$, $r = |\beta|$ et $E = (\alpha + |\beta|, \beta)$.

Préciser les valeurs propres de A et donner une matrice B dont les termes non diagonaux sont opposés et qui soit directement orthogonalement semblable à A, ainsi qu'une décomposition orthogonale de l'endomorphisme canoniquement associé à B.

IV.D.2) Dans cette question $\Omega = (0, \alpha)$ avec $\alpha > 0$ et $r = \alpha/2$.

Préciser les valeurs propres A et donner une matrice B dont les éléments non diagonaux sont opposés et qui soit directement orthogonalement semblable à A, ainsi qu'une décomposition orthogonale de l'endomorphisme canoniquement associé à B.

Faire un dessin dans le cas où $\alpha = 6$ illustrant les questions IV.C.2 et IV.C.3.

V Quadrique propre

Pour $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ de $\mathcal{M}_2(\mathbb{R})$ et (x,y,z) de \mathbb{R}^3 , on note $\psi_A(x,y,z)$ la partie réelle du déterminant de la matrice $\begin{pmatrix} a-x-\mathrm{i}\,z & b-y \\ c+y & d-x-\mathrm{i}\,z \end{pmatrix}$, où i est l'affixe complexe du point J=(0,1).

V.A -

V.A.1) Calculer $\psi_A(x,y,z)$.

V.A.2) Préciser la nature de la quadrique \mathcal{H}_A d'équation $\psi_A(x,y,z)=0$.

V.B -

V.B.1) Préciser l'intersection de \mathcal{H}_A avec le plan d'équation z=0.

V.B.2) Préciser l'intersection Z_A de \mathcal{H}_A avec le plan d'équation x = (a+d)/2.

V.C –

V.C.1) Si la matrice A a deux valeurs propres non réelles, comment voir les valeurs propres de A sur \mathcal{H}_A ? (On pourra s'intéresser à l'intersection de Z_A avec le plan d'équation y = 0.)

Peut-on voir une base de vecteurs propres à l'aide de \mathcal{H}_A ?

V.C.2) Dans le cas où $A = \begin{pmatrix} 1 & 7 \\ -1 & 3 \end{pmatrix}$ faire un dessin en perspective illustrant ce qui précède.