

Mathématiques 1

PSI C risées

PS

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrices autorisées

On considère la famille de fonctions $G_x: \mathbb{R} \to \mathbb{C}$ définies pour $x \in \mathbb{R}$ par

$$\forall t \in \mathbb{R} \qquad G_x(t) = e^{ix \sin t}$$

Ces fonctions sont \mathcal{C}^{∞} sur \mathbb{R} , 2π -périodiques.

Pour tout $x \in \mathbb{R}$, on note $(\varphi_n(x))_{n \in \mathbb{Z}}$ la famille des coefficients de Fourier exponentiels de la fonction G_x . Pour tout réel x on a donc :

$$\forall n \in \mathbb{Z}$$
 $\varphi_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} G_x(t) e^{-int} dt$

Le but du problème est d'étudier quelques propriétés des fonctions φ_n ainsi définies.

I Questions préliminaires

Soit x un réel fixé.

I.A -

I.A.1) Justifier l'égalité

$$\forall t \in \mathbb{R}$$
 $G_x(t) = e^{ix \sin t} = \sum_{n=-\infty}^{+\infty} \varphi_n(x)e^{int}$

Que peut-on dire de la convergence de la série de Fourier de G_x ?

I.A.2) Montrer que pour tout k dans \mathbb{N}^* , $|\varphi_n(x)| = o\left(\frac{1}{n^k}\right)$ lorsque n tend vers $+\infty$.

On utilisera des séries de Fourier des dérivées successives de G_x .

I.B – En exprimant $G_x(-t)$ en fonction de $G_x(t)$, montrer que pour n dans \mathbb{Z} , $\varphi_n(x) \in \mathbb{R}$.

I.C – Exprimer $G_x(t+\pi)$ et en déduire les égalités suivantes pour n dans \mathbb{Z} :

$$\varphi_n(-x) = (-1)^n \varphi_n(x) = \varphi_{-n}(x)$$

Que peut-on dire de la parité de φ_n pour $n \in \mathbb{Z}$?

$$I.D$$
 - Calculer $\sum_{n=-\infty}^{+\infty} |\varphi_n(x)|^2$.

L'étude préliminaire permet de restreindre l'étude des fonctions réelles φ_n à \mathbb{R}^+ et de se limiter au cas où $n \geqslant 0$.

II Forme intégrale et développement en série entière

Soit n un entier naturel.

II.A – Justifier que pour x réel, $|\varphi_n(x)| \leq 1$.

II.B – Montrer que pour x réel,

$$\varphi_n(x) = \sum_{k=0}^{+\infty} \frac{x^k}{k!} I_{n,k} \quad \text{avec} \quad I_{n,k} = \frac{1}{2\pi} \int_{-\pi}^{\pi} i^k e^{-int} (\sin t)^k dt$$

II.C.1) À l'aide de la formule d'Euler, justifier que pour (n, k) dans $\mathbb{N} \times \mathbb{N}$,

$$I_{n,k} = \sum_{m=0}^{k} \frac{A_{m,k}}{2\pi} \int_{-\pi}^{\pi} e^{it(2m-k-n)} dt$$

avec $A_{m,k}$ des constantes à préciser.

II.C.2) Vérifier que

$$\begin{cases} I_{n,k} = 0 & \text{si } n > k \text{ ou si } k - n \text{ est impair} \\ I_{n,k} = \frac{(-1)^p}{2^{n+2p}} \binom{n+2p}{n+p} & \text{si } k = n+2p \text{ avec } p \geqslant 0 \end{cases}$$

II.C.3) En déduire le développement en série entière, pour $n \ge 0$ et $x \in \mathbb{R}$:

$$\varphi_n(x) = \sum_{n=0}^{+\infty} \frac{(-1)^p}{p!(n+p)!} \left(\frac{x}{2}\right)^{n+2p}$$
(II.1)

Préciser le rayon de convergence.

II.C.4) Montrer que φ_n est de classe \mathcal{C}^{∞} sur \mathbb{R} .

II.D - Relation de dérivation

Soit n dans \mathbb{N}^* , vérifier que pour x réel

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(x^n\varphi_n(x)\right) = x^n\varphi_{n-1}(x)$$

II.E – Calcul numérique de $\varphi_n(x)$ avec x > 0 fixé

On approche $\varphi_n(x)$ à l'aide des sommes partielles

$$S_m = \sum_{p=0}^m (-1)^p a_p \quad \text{avec} \quad m \in \mathbb{N} \quad \text{et} \quad a_p = \frac{1}{p!(n+p)!} \left(\frac{x}{2}\right)^{n+2p}$$

- **II.E.1)** À partir de quelle valeur p_0 de p la suite $(a_p)_{p\in\mathbb{N}}$ est-elle décroissante?
- **II.E.2)** On suppose $N > p_0$. Majorer $|R_N|$ en fonction de (N, n, x) avec

$$R_N = \sum_{p=N+1}^{+\infty} (-1)^p a_p$$

En déduire, pour $\varepsilon > 0$ fixé, une condition suffisante sur N pour que $|\varphi_n(x) - S_N| < \varepsilon$.

La somme partielle S_N est dite alors valeur approchée de $\varphi_n(x)$ à ε près.

II.E.3) Écrire une fonction Maple ou Mathematica, CalculPhi, d'arguments (n, x, ε) retournant une valeur approchée de $\varphi_n(x)$ à ε près. Les coefficients a_p seront calculés par récurrence.

III Équation différentielle et étude de φ_n quand $x \to +\infty$

Soit n un entier naturel. On étudie l'équation différentielle d'inconnue y

$$x^{2}y'' + xy' + (x^{2} - n^{2})y = 0$$
(III.1)

On recherche des solutions dans l'ensemble $E = \mathcal{C}^2([0, +\infty[)$.

III.A - Résolution et propriété des solutions

2013-03-25 11:38:52

III.A.1) En utilisant le développement de φ_n en série entière (II.1), montrer que φ_n est solution sur $[0, +\infty[$ de (III.1).

III.A.2) Soit y une solution dans E de (III.1). On pose $z(x) = \sqrt{x} y(x)$ pour tout $x \in]0, +\infty[$.

Montrer que z est solution dans E d'une équation différentielle du type

$$z'' + qz = 0 (III.2)$$

avec $q \in E$.

Préciser l'expression de la fonction q et vérifier que $\lim_{x \to +\infty} q(x) = 1$.

III.A.3) Justifier que si z est une solution non nulle de (**III.2**), alors pour x > 0, $(z(x), z'(x)) \neq (0, 0)$.

En déduire que si α est un zéro de z, alors il existe un réel strictement positif η tel que α soit le seul point d'annulation de z sur $I = |\alpha - \eta, \alpha + \eta|$.

On dit dans ce cas que α est un zéro isolé de z.

III.A.4) Vérifier que les zéros de φ_n sur $]0, +\infty[$ sont isolés.

III.B - Comportement asymptotique de φ_n en $+\infty$

On étudie ici le comportement asymptotique au voisinage de $+\infty$ d'une solution $z \in E$ de l'équation différentielle définie sur $]0, +\infty[$, avec $\lambda \in \mathbb{R}^*$:

$$z'' + \left(1 + \frac{\lambda}{x^2}\right)z = 0 \tag{III.3}$$

Soit x_0 dans $]0, +\infty[$.

III.B.1) En considérant l'équation différentielle (III.3) sous la forme z'' + z = g avec $g(x) = \frac{-\lambda}{x^2}z(x)$, la résoudre sur $]0, +\infty[$ par la méthode de variation des constantes.

En déduire qu'il existe deux réels A et B tels que

$$\forall x \in]0, +\infty[\qquad z(x) = A\cos(x) + B\sin(x) + \lambda \int_{x_0}^x z(u)\sin(u-x)\frac{\mathrm{d}u}{u^2}$$

III.B.2) On pose pour x > 0

$$h(x) = \int_{x_0}^{x} |z(u)| \frac{\mathrm{d}u}{u^2}$$

a) Montrer qu'il existe des constantes réelles μ et M telles que h vérifie l'inégalité différentielle pour $x \geqslant x_0$

$$h'(x) - \frac{\mu}{x^2}h(x) \leqslant \frac{M}{x^2}$$

Préciser les constantes μ et M en fonction de A, B et λ .

b) En déduire que h est bornée sur $[x_0, +\infty[$ puis que z est bornée sur ce même intervalle.

Multiplier par $e^{\mu/x}$ et intégrer l'inégalité de la question précédente.

III.B.3) Justifier que

$$\int_{-\infty}^{+\infty} z(u)\sin(u-x)\frac{\mathrm{d}u}{u^2} = O\left(\frac{1}{x}\right)$$

au voisinage de $+\infty$.

En déduire l'existence de constantes α et β telles qu'au voisinage de $+\infty$,

$$z(x) = \alpha \cos(x - \beta) + O(\frac{1}{x})$$

III.B.4) Soit $n \in \mathbb{N}$. Montrer qu'il existe un couple de réels (α_n, β_n) tel que pour $x \to +\infty$,

$$\varphi_n(x) = \frac{\alpha_n}{\sqrt{x}}\cos(x - \beta_n) + O(\frac{1}{x\sqrt{x}})$$

Page 3/4

IV Étude des zéros de φ_n

On introduit l'équation différentielle

$$z_1''(x) + c^2 z_1(x) = 0$$
 avec $c > 0$ (IV.1)

L'objectif de cette partie est de comparer les solutions des équations différentielles (III.2) et (IV.1) afin d'obtenir des informations sur les zéros des fonctions φ_n .

IV.A – En utilisant l'encadrement de la question II.E.2, montrer que $\varphi_0(3) < 0$. En déduire que φ_0 possède un zéro $\alpha_0 \in]0,3[$.

On admettra que c'est le premier zéro de φ_0 , c'est-à-dire que φ_0 ne s'annule pas sur $]0, \alpha_0[$.

IV.B – En utilisant la question II.D, montrer par récurrence que pour tout entier $n \ge 1$ la fonction φ_n est strictement positive sur $[0, \alpha_0[$.

IV.C – Dans cette question, on fixe $n \in \mathbb{N}$ et $c \in [0,1[$. On pose $z(x) = \sqrt{x} \varphi_n(x)$, pour x > 0.

IV.C.1) Justifier qu'il existe un réel A > 0 tel que pour x > A, $q(x) > c^2$ (q définie en III.A.2).

IV.C.2) Soit a > A. On pose pour x > 0, $z_1(x) = \sin(c(x-a))$, solution de **IV.1**. On définit la fonction $W = z z'_1 - z_1 z'$.

Vérifier que pour x > 0, $W'(x) = (q(x) - c^2)z(x)z_1(x)$.

IV.C.3) On note $I_a = [a, a + \pi/c]$ et on suppose que φ_n ne possède pas de zéros sur I_a .

Déterminer les signes de W(a), $W(a + \pi/c)$ et de W' sur I_a et aboutir à une contradiction. En déduire que φ_n possède un zéro dans tout intervalle I_a avec a > A.

On pourra distinguer les cas suivant le signe de φ_n sur I_a .

IV.D - Soit $n \in \mathbb{N}$.

IV.D.1) Montrer qu'on peut ordonner les zéros de φ_n , c'est-à-dire qu'il existe une suite $\left(\alpha_k^{(n)}\right)_{k\in\mathbb{N}}$ strictement croissante de zéros de φ_n telle que φ_n ne s'annule pas sur $]0,\alpha_0^{(n)}[$ et sur tout intervalle $]\alpha_k^{(n)},\alpha_{k+1}^{(n)}[$ avec k dans \mathbb{N} et que $\lim_{k\to\infty}\alpha_k^{(n)}=+\infty$.

Construire la suite $\left(\alpha_k^{(n)}\right)_{k\in\mathbb{N}}$ par récurrence sur k en montrant que l'ensemble \mathcal{Z}_k des zéros de φ_n dans l'intervalle $\alpha_k^{(n)}$, $+\infty$ possède un plus petit élément.

IV.D.2) En déduire que la suite $(\alpha_k^{(n)})_{k\in\mathbb{N}}$ vérifie la propriété de répartition asymptotique :

$$\forall c \in]0,1[, \exists j \in \mathbb{N} \text{ tel que } \forall k \in \mathbb{N}, \ 0 < \alpha_{j+k+1}^{(n)} - \alpha_{j+k}^{(n)} < \frac{\pi}{c}$$

