SESSION 2013 PSIM102

EPREUVE SPECIFIQUE - FILIERE PSI

MATHEMATIQUES 1

Durée : 4 heures

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont autorisées.

Notations:

On note:

- N l'ensemble des entiers naturels.
- \mathbb{R} l'ensemble des réels et \mathbb{R}^+ l'intervalle $[0, +\infty[$.

Pour tout entier naturel n on note n! la factorielle de n avec la convention 0! = 1.

Objectifs:

L'objet de ce problème est d'expliciter la valeur d'une fonction (notée ψ) définie par une intégrale. Dans la **partie I**, on étudie une fonction f et l'on propose un procédé de calcul de la limite de f en $+\infty$. La **partie II** est consacrée à l'étude de deux fonctions (notées h et φ) qui seront utilisées dans la **partie III**.

Partie I

Etude d'une fonction et de sa limite

I.1 Etude de la fonction f

On note f la fonction définie sur \mathbb{R} par :

$$f(x) = \int_0^x \exp(-t^2) dt = \int_0^x e^{-t^2} dt.$$

- **I.1.1** Montrer que f est une fonction impaire dérivable sur \mathbb{R} .
- **I.1.2** Montrer que f est indéfiniment dérivable sur \mathbb{R} . Pour tout entier $n \in \mathbb{N}^*$, on note $f^{(n)}$ la dérivée n-ième de f. Montrer qu'il existe une fonction polynôme p_n , dont on précisera le degré, telle que pour tout $x \in \mathbb{R}$:

$$f^{(n)}(x) = p_n(x) \exp(-x^2)$$
.

- **I.1.3** Que peut-on dire de la parité de p_n ?
- **I.1.4** Démontrer que f admet une limite finie en $+\infty$ (on ne demande pas de calculer cette limite). Dans toute la suite du problème, on note Δ cette limite.

I.2 Développement en série de f

I.2.1 Montrer que pour tout
$$x \in \mathbb{R}$$
, on a $f(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{n!(2n+1)}$.

I.2.2 Expliciter $p_n(0)$.

I.3 Calcul de Δ

Pour tout entier n, on note :

$$W_n = \int_0^{\pi/2} \cos^n x \, dx.$$

- **I.3.1** Montrer que pour tout réel u, on a $e^u \ge 1 + u$.
- **I.3.2** Soit n un entier naturel non nul. Montrer que

$$\begin{cases} (1-u)^n \le e^{-nu} & \text{si} \quad u \le 1\\ e^{-nu} \le \frac{1}{(1+u)^n} & \text{si} \quad u > -1 \end{cases}$$

I.3.3 Démontrer que pour tout entier n non nul, on a :

$$\int_0^1 (1 - x^2)^n dx \le \int_0^{+\infty} e^{-nx^2} dx \le \int_0^{+\infty} \frac{dx}{(1 + x^2)^n}.$$

I.3.4 En déduire que pour tout $n \in \mathbb{N}^*$:

$$W_{2n+1} \le \frac{\Delta}{\sqrt{n}} \le W_{2n-2}.$$

En admettant que $W_n \sim \sqrt{\frac{\pi}{2n}}$, calculer Δ .

Partie II

Etude de deux fonctions

II.1 Etude de la fonction h

II.1.1 Justifier l'existence, pour tout réel b, de l'intégrale :

$$h(b) = \int_0^{+\infty} \cos(2bt) \exp(-t^2) dt.$$

On note ω la forme différentielle définie sur \mathbb{R}^2 par :

$$\omega(x,y) = e^{-(x^2 - y^2)} (\cos(2xy)dx + \sin(2xy)dy).$$

- **II.1.2** La forme différentielle ω est-elle exacte sur \mathbb{R}^2 ?
- **II.1.3** Etant donnés deux réels strictement positifs a et b, on note P le pavé de \mathbb{R}^2 défini par : $0 \le x \le a$ et $0 \le y \le b$. On note γ le bord de P orienté dans le sens trigonométrique. Quelle est la valeur de l'intégrale curviligne $\int_{\gamma} \omega$?
- **II.1.4** En évaluant l'intégrale curviligne de ω le long des segments qui forment γ , déterminer h(b) en fonction de b et Δ .

II.2 Etude de la fonction φ

II.2.1 Montrer que l'on définit une fonction φ paire et continue sur \mathbb{R} en posant :

$$\varphi(x) = \int_0^{+\infty} \exp\left(-t^2 - \frac{x^2}{t^2}\right) dt.$$

II.2.2 Montrer que φ est de classe \mathcal{C}^1 sur $]0, +\infty[$.

II.2.3 Déterminer une constante α telle que pour tout $x \in]0, +\infty[$ on ait :

$$\varphi'(x) = \alpha \varphi(x).$$

II.2.4 Expliciter $\varphi(x)$ pour $x \in]0, +\infty[$, puis pour $x \in \mathbb{R}$.

Partie III

Calcul d'une intégrale

III.1 Etude de la fonction ψ

III.1.1 Vérifier que l'on définit une fonction ψ , continue sur \mathbb{R} , paire en posant :

$$\psi(x) = \int_0^{+\infty} \frac{\cos(2xt)}{1+t^2} dt.$$

- **III.1.2** Calculer $\psi(0)$.
- **III.2** Soit $p \in \mathbb{N}^*$ et j_p la fonction définie sur \mathbb{R} par :

$$j_p(x) = \int_0^p y \exp(-(1+x^2)y^2) dy.$$

Montrer que $(j_p)_{p\in\mathbb{N}}$ est une suite de fonctions continues qui converge simplement sur \mathbb{R} . Expliciter sa limite.

III.3 Désormais, a désigne un réel. Soit $n \in \mathbb{N}^*$ et k_n fonction définie sur \mathbb{R}^+ par :

$$k_n(y) = \int_0^n y \exp\left(-y^2 x^2\right) \cos(2ax) dx.$$

Montrer que $(k_n)_{n\in\mathbb{N}^*}$ est une suite de fonctions continues qui converge simplement sur \mathbb{R}^+ . Expliciter sa limite.

III.4 Soit
$$u_{n,p} = \int_0^n j_p(x) \cos(2ax) dx$$
 avec $n \in \mathbb{N}^*$ et $p \in \mathbb{N}^*$.

- III.4.1 Justifier l'existence de $\lim_{p\to+\infty}u_{n,p}$ et l'expliciter sous forme d'une intégrale.
- III.4.2 Montrer que $u_{n,p} = \int_0^p k_n(y) \exp(-y^2) dy$.
- III.5 Justifier l'intégrabilité sur $[0, +\infty[$ de la fonction $y \mapsto k_n(y) \exp(-y^2)$.
- **III.6** Calculer $\psi(x)$.

Fin de l'énoncé