SESSION 2013 PCM2006

EPREUVE SPECIFIQUE - FILIERE PC

MATHEMATIQUES 2

Durée: 4 heures

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont interdites

On s'intéresse ici à des suites et séries de fonctions en liaison avec des intégrales.

Dans la **partie I**, on calcule indépendamment deux intégrales particulières (les questions 1 et 2 pour l'une, la question 3 pour l'autre) qui interviennent dans les **parties II** et **III**. Les **parties II** et **III** sont indépendantes.

Partie I : calculs préliminaires

I - 1.

I - 1.1.

Justifier l'existence de l'intégrale $K = \int_0^{+\infty} \frac{1 - \cos(t)}{t^2} dt$.

I - 1.2

Pour tout A > 0, justifier l'existence de l'intégrale $D(A) = \int_0^A \frac{\sin(t)}{t} dt$.

I - 1.3

Grâce à une intégration par parties, prouver que D(A) a une limite (réelle) quand A tend vers $+\infty$, égale à K. C'est-à-dire que : $K = \int_0^{+\infty} \frac{\sin(t)}{t} dt = \lim_{A \to +\infty} D(A)$.

I - 2.

I - 2.1.

Justifier que l'application $L: x \mapsto \int_0^{+\infty} \frac{1 - \cos(t)}{t^2} e^{-tx} dt$ est définie et continue sur \mathbb{R}_+ .

I - 2.2.

Montrer que, pour tout réel a > 0, l'application L est de classe C^2 sur l'intervalle $[a, +\infty[$. Etablir ensuite que l'application L est de classe C^2 sur l'intervalle $[0, +\infty[$.

I - 2.3.

Justifier que les fonctions $t \mapsto \frac{1 - \cos(t)}{t^2}$ et $t \mapsto \frac{1 - \cos(t)}{t}$ sont bornées sur $]0, +\infty[$.

Etablir alors que les fonctions $x \mapsto |xL'(x)|$ et $x \mapsto |xL(x)|$ sont majorées sur \mathbb{R}_+^* .

En déduire que : $\lim_{x \to +\infty} L'(x) = \lim_{x \to +\infty} L(x) = 0$.

I - 2.4.

Pour tout réel x > 0, exprimer L''(x) sans utiliser d'intégrale.

On pourra remarquer que $\cos(t) = \text{Re}(e^{it})$.

I - 2.5.

En déduire L'(x) pour x > 0, puis L(x) pour $x \ge 0$. Conclure que $K = \frac{\pi}{2}$

I - 3.

I - 3.1.

Justifier que la fonction $u \mapsto \frac{\ln(u)}{u-1}$ est intégrable sur]0,1[.

I - 3.2.

Pour tout $k \in \mathbb{N}$, justifier l'existence et calculer $\int_0^1 u^k \ln(u) du$.

I - 3.3

Grâce à un développement en série de $\frac{1}{1-u}$ pour $u \in]0,1[$ et en précisant le théorème utilisé,

justifier que :
$$\int_0^1 \frac{\ln(u)}{u-1} du = \sum_{k=0}^{+\infty} \frac{1}{(k+1)^2}$$

Par ailleurs, on donne sans avoir à le justifier : $\sum_{k=0}^{+\infty} \frac{1}{(k+1)^2} = \frac{\pi^2}{6}$.

Partie II : étude de quelques suites d'intégrales

II - 1.

Rappeler avec précision le théorème de convergence dominée.

II - 2.

II - 2.1. On considère ici une application continue $f:[0,+\infty[\to \mathbb{R}.$

Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^1 f(t^n) dt$. Déterminer $\lim_{n \to +\infty} I_n$.

II - 2.2. On suppose ici de plus que $u\mapsto \frac{f(u)}{u}$ est intégrable sur]0,1].

Déterminer $\lim_{n\to+\infty} nI_n$. On pourra transformer nI_n grâce à un changement de variable.

II - 2.3. Application 1.

Déterminer un équivalent quand $n \to +\infty$ de $\int_0^1 \sin(t^n) dt$ (grâce à une intégrale).

II - 3. On considère maintenant que $f:[0,+\infty[\to\mathbb{R}$ est une application continue et intégrable sur \mathbb{R}_+ .

II - 3.1.

Soit $n \in \mathbb{N}^*$.

Grâce à un changement de variable approprié, justifier l'existence de $A_n = \int_1^{+\infty} f(t^n) dt$.

II - 3.2.

Déterminer $\lim_{n\to+\infty} nA_n$ (grâce à une intégrale que l'on ne cherchera pas à calculer).

II - 4.

II - 4.1. Pour tout
$$n \in \mathbb{N}, n \geqslant 2$$
 et tout $A > 1$, on pose $C_n(A) = \int_1^A \sin(t^n) dt$.

Grâce à un changement de variable et une intégration par parties, exprimer $C_n(A)$ en fonction de $\int_1^{A^n} \frac{1-\cos(u)}{u^2} u^{\frac{1}{n}} du$ et de A.

II - 4.2.

En déduire que $C_n(A)$ a une limite quand $A \to +\infty$, prouvant l'existence de $\int_1^{+\infty} \sin(t^n) dt$ pour tout $n \in \mathbb{N}$, $n \ge 2$.

II - 4.3. Application 2.

Déterminer $\lim_{n\to+\infty} n \int_0^{+\infty} \sin(t^n) dt$ grâce à K calculée en **I-2.5**.

Partie III : étude de séries de fonctions

III - 1. Un premier exemple.

III - 1.1.

Pour tout $x \in]-1,1[$, calculer $F(x) = \sum_{n=1}^{+\infty} x^n$ ainsi que F'(x).

III - 1.2.

Déterminer
$$\lim_{\substack{x<1\\x\to 1}} F(x)$$
, $\lim_{\substack{x<1\\x\to 1}} (1-x)F(x)$, $\lim_{\substack{x<1\\x\to 1}} (1-x)F'(x)$ et $\lim_{\substack{x<1\\x\to 1}} (1-x)^2 F'(x)$.

III - 2. Un deuxième exemple.

Dans cette question, pour tout $x \in]-1,1[$, on pose cette fois : $F(x) = \sum_{n=1}^{+\infty} \frac{x^n}{1-x^n}$.

III - 2.1.

Soit $a \in]0,1[$. Prouver la convergence normale de cette série de fonctions sur le segment [-a,a]. En déduire que F est définie et continue sur]-1,1[.

III - 2.2.

Montrer que, pour tout $x \in]0,1[$ et tout $n \in \mathbb{N}^*$, on a $\frac{1-x^n}{1-x} \le n$. En déduire $\lim_{x < 1 \atop x \to 1} F(x)$ et $\lim_{x < 1 \atop x \to 1} (1-x)F(x)$.

III - 3. Dans cette question, f est une application réelle continue et croissante sur [0,1] avec

$$f(0)=0$$
 et telle que $u\mapsto \frac{f(u)}{u}$ soit intégrable sur]0,1[. Soit $x\in]0,1[.$

III - 3.1.

Justifier l'existence de
$$G(x) = \int_0^{+\infty} f(x^t) dt$$
 et l'égalité $G(x) = -\frac{1}{\ln(x)} \int_0^1 \frac{f(u)}{u} du$.

III - 3.2.

Pour tout $n \in \mathbb{N}^*$, justifier l'encadrement :

$$\int_{n}^{n+1} f(x^t) \, \mathrm{d}t \leqslant f(x^n) \leqslant \int_{n-1}^{n} f(x^t) \, \mathrm{d}t.$$

III - 3.3.

En déduire l'existence de $F(x) = \sum_{n=0}^{+\infty} f(x^n)$, ainsi qu'un encadrement de F(x) par deux intégrales dépendant de x.

III - 3.4.

Conclure avec soin que :
$$\lim_{\substack{x<1\\x\to 1}} (1-x)F(x) = \int_0^1 \frac{f(u)}{u} du$$
.

III - 4. Un dernier exemple.

Pour tout
$$x \in]-1,1[$$
, on pose enfin cette fois : $F(x) = -\sum_{n=1}^{+\infty} \ln(1-x^n)$.

III - 4.1.

Montrer que F est définie et de classe C^1 sur]-1,1[et exprimer sa dérivée sous la forme d'une série de fonctions.

III - 4.2.

Grâce à III - 3.4., montrer que
$$\lim_{\substack{x<1\\x\to 1}} (1-x)F(x) = \int_0^1 \frac{\ln(u)}{u-1} du$$
 étudiée en I - 3.

III - 4.3.

Par une méthode similaire à celle de III - 3., montrer que :

$$\lim_{\substack{x<1\\x\to 1}\\x\to 1} \left((1-x)^2 \sum_{n=1}^{+\infty} \frac{nx^n}{1-x^n} \right) = \int_0^1 \frac{\ln(u)}{u-1} \, \mathrm{d}u.$$

En déduire $\lim_{\substack{x<1\\x\to 1}} ((1-x)^2 F'(x)).$

Fin de l'énoncé