

Mathématiques 1

PSI

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrices autorisées

- Dans le problème λ désigne toujours une application continue de \mathbb{R}^+ dans \mathbb{R}^+ , croissante et non majorée.
- Dans le problème, f désigne toujours une application continue de \mathbb{R}^+ dans \mathbb{R} .
- On note E l'ensemble des réels x pour lesquels l'application $t \mapsto f(t)e^{-\lambda(t)x}$ est intégrable sur \mathbb{R}^+ .
- On note E' l'ensemble des réels x pour lesquels l'intégrale $\int_{0}^{+\infty} f(t)e^{-\lambda(t)x} dt$ converge.

On se propose ci-après d'étudier la transformation $f \mapsto Lf$ définie en I.A., d'en établir quelques propriétés, d'examiner certains exemples et d'utiliser la transformation L pour l'étude d'un opérateur.

Préliminaires, définition de la transformation L

Quelle inclusion existe-t-il entre les ensembles E et E'?

Désormais, pour $x \in E'$, on notera

$$Lf(x) = \int_0^{+\infty} f(t)e^{-\lambda(t)x} dt$$

I.B -Montrer que si E n'est pas vide, alors E est un intervalle non majoré de \mathbb{R} .

I.C -Montrer que si E n'est pas vide, alors Lf est continue sur E.

Exemples dans le cas de f positive II

II.A -Comparer E et E' dans le cas où f est positive.

II.B – Dans les trois cas suivants, déterminer E.

II.B.1) $f(t) = \lambda'(t)$, avec λ supposée de classe C^1 .

 $f(t) = e^{t\lambda(t)}.$ II.B.2)

II.B.3)

Dans cette question, on étudie le cas $\lambda(t) = t^2$ et $f(t) = \frac{1}{1+t^2}$ pour tout $t \in \mathbb{R}^+$. II.C –

II.C.1) Déterminer E. Que vaut Lf(0)?

II.C.2) Prouver que Lf est dérivable.

Montrer l'existence d'une constante A > 0 telle que pour tout x > 0, on ait $Lf(x) - (Lf)'(x) = \frac{A}{\sqrt{x}}$. II.C.3)

On note $g(x) = e^{-x} Lf(x)$ pour $x \ge 0$. II.C.4)

Montrer que pour tout $x \ge 0$, on a $g(x) = \frac{\pi}{2} - A \int_0^x \frac{e^{-t}}{\sqrt{t}} dt$.

En déduire la valeur de l'intégrale $\int_{\hat{a}}^{+\infty} e^{-t^2} dt$. II.C.5)

Étude d'un premier exemple

Dans cette partie, $\lambda(t) = t$ pour tout $t \in \mathbb{R}^+$ et $f(t) = \frac{t}{e^t - 1} - 1 + \frac{t}{2}$ pour tout $t \in \mathbb{R}^{+*}$.

Montrer que f se prolonge par continuité en 0.

On note encore f le prolongement obtenu.

III.B -Déterminer E.

III.C -À l'aide d'un développement en série, montrer que pour tout x > 0, on a

$$Lf(x) = \frac{1}{2x^2} - \frac{1}{x} + \sum_{n=1}^{+\infty} \frac{1}{(n+x)^2}$$

Est-ce que $Lf(x) - \frac{1}{2x^2} + \frac{1}{x}$ admet une limite finie en 0^+ ?

IV Généralités dans le cas typique

Dans cette partie, $\lambda(t) = t$ pour tout $t \in \mathbb{R}^+$.

IV.A — Montrer que si E n'est pas vide et si α est sa borne inférieure (on convient que $\alpha = -\infty$ si $E = \mathbb{R}$), alors Lf est de classe C^{∞} sur $]\alpha, +\infty[$ et exprimer ses dérivées successives à l'aide d'une intégrale.

IV.B – Dans le cas particulier où $f(t) = e^{-at}t^n$ pour tout $t \in \mathbb{R}^+$, avec $n \in \mathbb{N}$ et $a \in \mathbb{R}$, expliciter E, E' et calculer Lf(x) pour $x \in E'$.

IV.C - Comportement en l'infini

On suppose ici que E n'est pas vide et que f admet au voisinage de 0 le développement limité d'ordre $n \in \mathbb{N}$ suivant :

$$f(t) = \sum_{k=0}^{n} \frac{a_k}{k!} t^k + O(t^{n+1})$$

IV.C.1) Montrer que pour tout $\beta > 0$, on a, lorsque x tend vers $+\infty$, le développement asymptotique suivant :

$$\int_0^\beta \left(f(t) - \sum_{k=0}^n \frac{a_k}{k!} t^k \right) e^{-tx} dt = O(x^{-n-2})$$

IV.C.2) En déduire que lorsque x tend vers l'infini, on a le développement asymptotique :

$$Lf(x) = \sum_{k=0}^{n} \frac{a_k}{x^{k+1}} + O(x^{-n-2})$$

IV.D - Comportement en 0

On suppose ici que f admet une limite finie l en $+\infty$.

IV.D.1) Montrer que E contient \mathbb{R}^{+*} .

IV.D.2) Montrer que xLf(x) tend vers l en 0^+ .

V Étude d'un deuxième exemple

Dans cette partie, $\lambda(t) = t$ pour tout $t \in \mathbb{R}^+$ et $f(t) = \frac{\sin t}{t}$ pour tout $t \in \mathbb{R}^{+*}$, f étant prolongée par continuité en 0.

V.A – Montrer que E ne contient pas 0.

V.B – Montrer que $E =]0, +\infty[$.

V.C – Montrer que E' contient 0.

V.D - Calculer (Lf)'(x) pour $x \in E$.

V.E – En déduire (Lf)(x) pour $x \in E$.

$$V.F$$
 - On note pour $n \in \mathbb{N}$ et $x \ge 0$, $f_n(x) = \int_{n\pi}^{(n+1)\pi} \frac{\sin t}{t} e^{-xt} dt$.

Montrer que $\sum_{n\geq 0} f_n$ converge uniformément sur $[0,+\infty[$.

V.G – Que vaut Lf(0)?

2 avril 2012 17:10

VI Injectivité dans le cas typique

Dans cette partie, $\lambda(t) = t$ pour tout $t \in \mathbb{R}^+$.

VI.A – Soit g une application continue de [0,1] dans \mathbb{R} . On suppose que pour tout $n \in \mathbb{N}$, on a

$$\int_0^1 t^n g(t) \ dt = 0$$

VI.A.1) Que dire de
$$\int_0^1 P(t)g(t) dt$$
 pour $P \in \mathbb{R}[X]$?

VI.A.2) En déduire que g est l'application nulle.

VI.B – Soient f fixée telle que E soit non vide, $x \in E$ et a > 0.

On pose $h(t) = \int_0^t e^{-xu} f(u) \ du$ pour tout $t \ge 0$.

VI.B.1) Montrer que $Lf(x+a) = a \int_0^{+\infty} e^{-at} h(t) dt$.

VI.B.2) On suppose que pour tout $n \in \mathbb{N}$, on a Lf(x + na) = 0.

Montrer que, pour tout $n \in \mathbb{N}$, l'intégrale $\int_0^1 u^n h\left(-\frac{\ln u}{a}\right) \, du$ converge et qu'elle est nulle.

VI.B.3) Qu'en déduit-on pour la fonction h?

VI.C – Montrer que l'application qui à f associe Lf est injective.

VII Étude en la borne inférieure de E

VII.A - Cas positif

On suppose que f est positive et que E n'est ni vide ni égal à \mathbb{R} . On note α sa borne inférieure.

VII.A.1) Montrer que si Lf est bornée sur E, alors $\alpha \in E$.

VII.A.2) Si $\alpha \notin E$, que dire de Lf(x) quand x tend vers α^+ ?

VII.B – Dans cette question, $f(t) = \cos t$ et $\lambda(t) = \ln(1+t)$.

VII.B.1) Déterminer E.

VII.B.2) Déterminer E'.

VII.B.3) Montrer que Lf admet une limite en α , borne inférieure de E et la déterminer.

VIII Une utilisation de la transformation L

Dans cette partie, \mathcal{P} désigne l'espace vectoriel des fonctions polynomiales à coefficients complexes et on utilise la transformation L appliquée à des éléments de \mathcal{P} pour l'étude d'un opérateur U.

VIII.A – Soient P et Q deux éléments de \mathcal{P} .

Montrer que l'intégrale $\int_0^{+\infty} e^{-t} \overline{P}(t) Q(t) dt$, où \overline{P} est le polynôme dont les coefficients sont les conjugués de ceux de P, converge.

VIII.B – On note pour tout couple $(P,Q) \in \mathcal{P}^2$,

$$\langle P, Q \rangle = \int_0^{+\infty} e^{-t} \overline{P}(t) Q(t) dt$$

Vérifier que $\langle .,. \rangle$ définit un produit scalaire sur \mathcal{P} .

VIII.C – On note D l'endomorphisme de dérivation et U l'endomorphisme de \mathcal{P} défini par

$$U(P)(t) = e^t D(te^{-t}P'(t))$$

Vérifier que U est un endomorphisme de \mathcal{P} .

VIII.D – Montrer que pour tous P et Q de \mathcal{P} , on a

$$\langle U(P), Q \rangle = \langle P, U(Q) \rangle$$

VIII.E — Montrer que U admet des valeurs propres dans \mathbb{C} , qu'elles sont réelles et que deux vecteurs propres associés à des valeurs propres distinctes sont orthogonaux.

VIII.F – Soient λ une valeur propre de U et P un vecteur propre associé.

VIII.F.1) Montrer que P est solution d'une équation différentielle linéaire simple que l'on précisera.

VIII.F.2) Quel lien y a-t-il entre λ et le degré de P?

VIII.G – Description des éléments propres de U

On considère sur $[0, +\infty[$ l'équation différentielle

$$(E_n): tP'' + (1-t)P' + nP = 0$$

avec $n \in \mathbb{N}$ et d'inconnue $P \in \mathcal{P}$.

VIII.G.1) En appliquant la transformation L avec $\lambda(t) = t$ à (E_n) , montrer que si P est solution de (E_n) sur $[0, +\infty[$, alors son image Q par L est solution d'une équation différentielle (E'_n) d'ordre 1 sur $]1, +\infty[$.

VIII.G.2) Résoudre l'équation (E'_n) sur $]1,+\infty[$ et en déduire les valeurs et vecteurs propres de l'endomorphisme U.

VIII.G.3) Quel est le lien entre ce qui précède et les fonctions polynomiales définies pour $n \in \mathbb{N}$ par $P_n(t) = e^t D^n(e^{-t}t^n)$?

