

Mathématiques 2

PSI

2012

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrices autorisées

Notations

On note \mathbb{R} le corps des nombres réels. Si n est un entier positif, on munit l'espace vectoriel \mathbb{R}^n du produit scalaire canonique, noté $\langle X,Y\rangle$ pour $X,Y\in\mathbb{R}^n$. On note $\|X\|=\sqrt{\langle X,X\rangle}$ la norme associée.

On note $\mathcal{M}_n(\mathbb{R})$ l'algèbre des matrices carrées d'ordre n à coefficients réels. On assimile \mathbb{R}^n à l'espace des vecteurs colonnes d'ordre n et $\mathcal{M}_n(\mathbb{R})$ à son algèbre d'endomorphismes. Ainsi $\langle X,Y\rangle={}^t\!XY$. On note I_n la matrice unité de $\mathcal{M}_n(\mathbb{R})$.

Si $A = (a_{ij})_{1 \leqslant i,j \leqslant n} \in \mathcal{M}_n(\mathbb{R})$, on note Tr(A) la somme de ses éléments diagonaux : $\text{Tr}(A) = \sum_{i=1}^n a_{ii}$. On rappelle

que Tr(A) est égale à la somme des valeurs propres complexes de A comptées avec leurs ordres de multiplicité. Si $A \in \mathcal{M}_n(\mathbb{R})$, le polynôme caractéristique de A est $P_A(X) = \det(A - XI_n)$.

Si $A \in \mathcal{M}_n(\mathbb{R})$, on définit $R(A) = \{ {}^t X A X \mid X \in \mathbb{R}^n, ||X|| = 1 \}$ qui est une partie de \mathbb{R} .

Les parties ainsi que les questions ne sont pas indépendantes.

I Généralités

Soit $A = (a_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R}).$

I.A – Démontrer que les valeurs propres réelles de A sont dans R(A).

I.B - I.B.1) Démontrer que les éléments a_{ii} $(1 \le i \le n)$ de la diagonale de A sont dans R(A).

I.B.2) En considérant la matrice

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

montrer que les éléments a_{ij} avec $i \neq j$ ne sont pas nécessairement dans R(A).

I.C — On considère deux nombres réels $a \in R(A)$ et $b \in R(A)$, avec a < b. Soient X_1 et X_2 deux vecteurs de norme 1 tels que ${}^tX_1AX_1 = a$, ${}^tX_2AX_2 = b$.

I.C.1) Démontrer que X_1 et X_2 sont linéairement indépendants.

I.C.2) On pose $X_{\lambda} = \lambda X_1 + (1 - \lambda) X_2$ pour $0 \leqslant \lambda \leqslant 1$.

Démontrer que la fonction $\phi: \lambda \mapsto \frac{{}^t X_{\lambda} A X_{\lambda}}{\|X_{\lambda}\|^2}$ est définie et continue sur l'intervalle [0,1].

I.C.3) En déduire que le segment [a, b] est inclus dans R(A).

I.D – Démontrer que si Tr(A) = 0 alors $0 \in R(A)$.

I.E - Soit Q une matrice orthogonale réelle. Démontrer que $R(A) = R({}^{t}QAQ)$.

 $\boldsymbol{I.F}$ – On considère les conditions suivantes :

(C1) $\operatorname{Tr}(A) \in R(A)$

(C2) Il existe une matrice orthogonale réelle Q telle que la diagonale de la matrice tQAQ soit de la forme $(\operatorname{Tr}(A),0,\dots,0)$

I.F.1) Démontrer que la condition (C2) implique la condition (C1).

I.F.2) On suppose que $x \in R(A)$.

Démontrer qu'il existe une matrice Q_1 orthogonale telle que

$${}^{t}Q_{1}AQ_{1} = \begin{pmatrix} x & L \\ C & B \end{pmatrix}$$

où B est une matrice de format (n-1,n-1) $(B \in \mathcal{M}_{n-1}(\mathbb{R}))$, C un vecteur colonne à n-1 éléments $(C \in \mathcal{M}_{n-1,1}(\mathbb{R}))$ et L un vecteur ligne à n-1 éléments $(L \in \mathcal{M}_{1,n-1}(\mathbb{R}))$.

I.F.3) Démontrer que si la matrice A est symétrique il en est de même pour la matrice B ci-dessus.

- **I.F.4)** Démontrer que $Tr(A) = Tr({}^tQ_1AQ_1)$.
- **I.F.5)** En déduire que si A est symétrique, la condition (C1) implique la condition (C2) On pourra raisonner par récurrence sur n.

II Matrices symétriques de format (2,2)

Dans toute cette partie A et B désignent des matrices symétriques réelles de $\mathcal{M}_2(\mathbb{R})$. On note $\lambda_1 \leqslant \lambda_2$ (resp. $\mu_1 \leqslant \mu_2$) les valeurs propres de A (resp. B).

De plus on dira qu'une matrice symétrique S est positive, ce que l'on notera $S \ge 0$, si et seulement si toutes ses valeurs propres sont ≥ 0 .

- II.A Démontrer que $R(A) = [\lambda_1, \lambda_2].$
- II.B On considère l'ensemble $\Gamma \subset \mathbb{R}^2$ défini par l'équation $\langle AX, X \rangle = 1$.
- II.B.1) Caractériser les conditions sur les λ_i pour lesquelles cet ensemble est :
- a) vide:
- b) la réunion de deux droites;
- c) une ellipse;
- d) une hyperbole.
- II.B.2) Réprésenter sur une même figure les ensembles Γ obtenus pour A diagonale avec $\lambda_1 \in \{-4, -1, 0, 1/4, 1\}$ et $\lambda_2 = 1$.
- II.C Démontrer que $Tr(AB) \leq \lambda_1 \mu_1 + \lambda_2 \mu_2$.

On pourra utiliser une matrice P orthogonale telle que tPBP soit une matrice diagonale, pour obtenir ${}^tPAP = A' = (a'_{ij})$ avec $\operatorname{Tr}(A) = \lambda_1 + \lambda_2 = a'_{11} + a'_{22}$.

II.D - On pose

$$A = \begin{pmatrix} a & b \\ b & d \end{pmatrix}$$

et on suppose $A \geqslant 0$.

- **II.D.1)** Démontrer que $det(A) \ge 0$.
- **II.D.2)** Démontrer que ${}^tXAX \geqslant 0$ pour tout vecteur X.
- **II.D.3**) Démontrer que $a \ge 0$ et $d \ge 0$.
- II.D.4) Soit $S \in \mathcal{M}_2(\mathbb{R})$ symétrique. Démontrer que :

$$S \geqslant 0$$
 si et seulement si $(\text{Tr}(S) \geqslant 0 \text{ et } \det(S) \geqslant 0)$

II.E - On pose

$$A = \begin{pmatrix} a_1 & b_1 \\ b_1 & d_1 \end{pmatrix} \qquad B = \begin{pmatrix} a_2 & b_2 \\ b_2 & d_2 \end{pmatrix}$$

On suppose dans cette section que $A \ge 0$ et $B \ge 0$.

II.E.1) En appliquant l'inégalité de Cauchy-Schwarz aux vecteurs $(b_1, \sqrt{\det A})$ et $(b_2, \sqrt{\det B})$, démontrer que

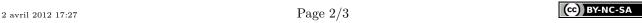
$$b_1b_2 \leqslant \sqrt{a_1a_2d_1d_2} - \sqrt{\det A \det B}$$

II.E.2) En calculant det(A+B) - det A - det B, en déduire que

$$\det(A+B) \geqslant \det(A) + \det(B) + 2\sqrt{\det(A)\det(B)}$$

- II.F On suppose dans cette sous-partie $A \ge 0$ et $B \ge 0$, det $A \det B \ne 0$ et $b_1b_2 \ne 0$.
- **II.F.1)** Démontrer que l'on a l'égalité dans la formule de la question **II.E.2** si et seulement si les vecteurs (a_1, d_1) et (a_2, d_2) sont liés, ainsi que les vecteurs $(b_1, \sqrt{\det A})$ et $(b_2, \sqrt{\det B})$.
- II.F.2) Démontrer alors que l'on a l'égalité dans la formule de la question II.E.2 si et seulement si les matrices A et B sont proportionnelles ($A = \lambda B$ pour un $\lambda \in \mathbb{R}, \lambda > 0$).
- II.G On considère la relation suivante sur l'ensemble des matrices symétriques réelles de format (2,2): on dit que $S \leq S'$ si et seulement si la matrice symétrique S' S vérifie $S' S \geqslant 0$.

Démontrer que la relation \leq ci-dessus est bien une relation d'ordre sur les matrices symétriques réelles de format (2,2).



II.H – On considère une suite $(A_n)_{n\geqslant 0}$

$$A_n = \begin{pmatrix} a_n & b_n \\ b_n & d_n \end{pmatrix}$$

de matrices symétriques de $\mathcal{M}_2(\mathbb{R})$. On suppose que la suite $(A_n)_{n\geq 0}$ est croissante et majorée pour la relation d'ordre définie à la question précédente.

- **II.H.1)** Démontrer que pour tout vecteur X, la suite $({}^tXA_nX)_{n\geq 0}$ est croissante majorée.
- **II.H.2)** Démontrer que les suites $(a_n)_{n\geqslant 0}$ et $(d_n)_{n\geqslant 0}$ sont croissantes majorées.
- **II.H.3)** En considérant le vecteur X = (1,1), démontrer que la suite de matrices $(A_n)_{n \geqslant 0}$ est convergente dans $\mathcal{M}_2(\mathbb{R})$, c'est-à-dire que les suites $(a_n)_{n \geqslant 0}$, $(b_n)_{n \geqslant 0}$ et $(d_n)_{n \geqslant 0}$ sont convergentes dans \mathbb{R} .

III Matrices symétriques définies positives

Dans cette partie toutes les matrices sont de format (n, n), où n est un entier supérieur ou égal à 2. On dit qu'une matrice symétrique réelle est définie positive si et seulement si toutes ses valeurs propres sont strictement positives.

III.A – Soit A une matrice symétrique définie positive.

Démontrer qu'il existe une matrice inversible Y telle que $A = {}^tYY$.

III.B – Soient A une matrice symétrique définie positive et B une matrice symétrique.

Démontrer qu'il existe une matrice inversible T telle que :

$${}^tTAT = I_n$$
 et ${}^tTBT = D$

où I_n désigne la matrice identité et D une matrice diagonale.

III.C – Soient A et B deux matrices symétriques définies positives.

- **III.C.1)** Démontrer que : $det(I_n + B) \ge 1 + det B$.
- **III.C.2)** En déduire que : $det(A+B) \ge det A + det B$.
- III.D Soient x un nombre réel strictement positif, β un nombre réel tel que $0 < \beta < 1$.

Démontrer que : $x^{\beta} \leq \beta x + 1 - \beta$.

III.E – Soient A et B deux matrices symétriques définies positives, α et β deux nombres réels > 0 tels que $\alpha + \beta = 1$; démontrer que :

$$\det(\alpha A + \beta B) \geqslant (\det A)^{\alpha} (\det B)^{\beta}$$

III.F – Pour $1 \leq i \leq k$, soient A_i des matrices symétriques définies positives et α_i des nombres strictement positifs tels que $\alpha_1 + \cdots + \alpha_k = 1$. Démontrer que

$$\det(\alpha_1 A_1 + \dots + \alpha_k A_k) \geqslant (\det A_1)^{\alpha_1} \dots (\det A_k)^{\alpha_k}$$

On pourra raisonner par récurrence sur k.

 \bullet \bullet FIN \bullet \bullet

