

Mathématiques 1

2015 Sées

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrices autorisées

Si n et k sont deux entiers naturels, on note $\binom{n}{k}$ le nombre de parties à k éléments d'un ensemble à n éléments.

I Approximation

I.A - Quelques calculs préliminaires

Dans cette sous-partie, x est un nombre réel et n est un entier naturel.

I.A.1) Montrer que
$$\sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} = 1.$$

I.A.2) Montrer que
$$\sum_{k=0}^{n} k \binom{n}{k} x^k (1-x)^{n-k} = nx.$$

I.A.3) Montrer que
$$\sum_{k=0}^{n} k(k-1) \binom{n}{k} x^k (1-x)^{n-k} = n(n-1)x^2$$
.

I.A.4) Déduire des questions précédentes que

$$\sum_{k=0}^{n} \left(x - \frac{k}{n} \right)^{2} \binom{n}{k} x^{k} (1-x)^{n-k} = \frac{x(1-x)}{n}.$$

$I.B - \acute{E}tude de S(x)$

Soit $n \in \mathbb{N}^*$ et $x \in [0,1]$. Le but de cette sous-partie est de majorer la somme

$$S(x) = \sum_{k=0}^{n} \left| x - \frac{k}{n} \right| {n \choose k} x^k (1-x)^{n-k}.$$

I.B.1) Majoration de S(x) : première méthode

On note

-
$$V$$
 l'ensemble des entiers $k \in \{0, ..., n\}$ tels que $\left| x - \frac{k}{n} \right| \leqslant \frac{1}{\sqrt{n}}$,

- W l'ensemble des entiers
$$k \in \{0, \dots, n\}$$
 tels que $\left| x - \frac{k}{n} \right| > \frac{1}{\sqrt{n}}$,

et on pose

$$S_V(x) = \sum_{k \in V} \left| x - \frac{k}{n} \right| \binom{n}{k} x^k (1 - x)^{n - k}$$
 et $S_W(x) = \sum_{k \in W} \left| x - \frac{k}{n} \right| \binom{n}{k} x^k (1 - x)^{n - k}$.

a) Montrer que
$$S_V(x) \leqslant \frac{1}{\sqrt{n}}$$
.

b) Montrer que
$$S_W(x) \leqslant \frac{x(1-x)}{\sqrt{n}}$$
.

c) En déduire que
$$S(x) \leqslant \frac{5}{4\sqrt{n}}$$
.

I.B.2) Majoration de S(x): seconde méthode

a) Écrire l'inégalité de Cauchy-Schwarz dans l'espace \mathbb{R}^{n+1} muni de son produit scalaire canonique.

b) À l'aide de la question I.A.4, en déduire que
$$S(x) \leqslant \frac{1}{2\sqrt{n}}$$
.

I.C - Application à l'approximation uniforme

Dans cette sous-partie, on note \mathcal{C} l'espace vectoriel des fonctions continues de [0,1] dans \mathbb{R} . On munit \mathcal{C} de la norme de la borne supérieure, notée $\| \cdot \|_{\infty}$:

$$\forall f \in \mathcal{C}, \quad \|f\|_{\infty} = \sup_{x \in [0,1]} |f(x)|.$$

Pour $f \in \mathcal{C}$ et $n \in \mathbb{N}^*$, on définit le *n*-ième polynôme de Bernstein de f, noté $B_n(f)$, en posant, pour tout $x \in [0,1]$

$$B_n(f)(x) = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}.$$

Le but de cette sous-partie est d'étudier $||B_n(f) - f||_{\infty}$ lorsque f est un élément de \mathcal{C} vérifiant une hypothèse additionnelle.

I.C.1) Un exemple

Si $f(x) = x^2$ pour tout $x \in [0, 1]$, déterminer, pour tout $n \in \mathbb{N}^*$, le polynôme $B_n(f)$ et en déduire la valeur de $||B_n(f) - f||_{\infty}$.

I.C.2) Soit $f \in \mathcal{C}$. Montrer, pour tout $x \in [0, 1]$, la relation

$$B_n(f)(x) - f(x) = \sum_{k=0}^{n} \left(f\left(\frac{k}{n}\right) - f(x) \right) \binom{n}{k} x^k (1-x)^{n-k}.$$

- **I.C.3)** a) Montrer que si f est δ -lipschitzienne, alors $||B_n(f) f||_{\infty} \leqslant \frac{\delta}{2\sqrt{n}}$ pour tout entier $n \geqslant 1$.
- b) En déduire que si f est de classe C^1 , alors il existe un réel c tel que, pour tout $n \in \mathbb{N}^*$, $||B_n(f) f||_{\infty} \leqslant \frac{c}{\sqrt{n}}$.
- c) Étendre le résultat précédent au cas où f est une fonction continue, de classe C^1 par morceaux.
- **I.C.4)** Soit $f:[0,1] \to \mathbb{R}$ une fonction continue, C^1 par morceaux. Déduire de ce qui précède que, pour tout réel r>0, il existe un polynôme P à coefficients réels tel que $\forall x \in [0,1], \ f(x)-r \leqslant P(x) \leqslant f(x)+r$.

II Un théorème de Hardy-Littlewood

Soit $(a_n)_{n\geqslant 0}$ une suite réelle. On suppose que la série entière associée $\sum a_n x^n$ admet pour rayon de convergence $R_a=1$ et que la somme f de cette série, définie par

$$\forall x \in]-1,1[\quad f(x) = \sum_{n=0}^{+\infty} a_n x^n$$

vérifie

$$f(x) \sim \frac{1}{1-x}$$
 quand $x \to 1, x < 1.$ (II.1)

On note

$$A_n = \sum_{k=0}^n a_k$$
 et $\widetilde{a}_n = \frac{A_n}{n+1}$.

Ainsi, \tilde{a}_n est la moyenne arithmétique des nombres a_0, \ldots, a_n .

Le but de cette partie est d'étudier le comportement des a_n lorsque n tend vers l'infini. On s'intéresse en particulier aux deux propriétés suivantes :

$$\lim_{n \to \infty} a_n = 1 \tag{II.2}$$

et

$$\lim_{n \to \infty} \widetilde{a}_n = 1 \tag{II.3}$$

II.A – L'hypothèse II.1 n'entraîne pas la propriété II.2

II.A.1) Déterminer une suite réelle $(b_n)_{n\geqslant 0}$ telle que

$$\forall x \in]-1, 1[, \frac{1}{1-x^2} = \sum_{n=0}^{+\infty} b_n x^n.$$

II.A.2) En déduire un exemple de suite $(a_n)_{n\geqslant 0}$ vérifiant II.1 mais ne convergeant pas vers 1.

II.B – L'hypothèse II.1 n'entraîne pas la propriété II.3

II.B.1) Donner le développement en série entière de la fonction $t \mapsto \frac{1}{(1-t)^2}$ ainsi que son rayon de convergence. Préciser si la série converge aux bornes de l'intervalle de convergence.

II.B.2) On considère les fonctions $\varphi: x \mapsto \frac{1}{(1-x^2)^2}$ et $\psi: x \mapsto \frac{1}{(1+x)^2(1-x)}$. Déterminer des suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que, pour tout $x\in]-1,1[$,

$$\varphi(x) = \sum_{n=0}^{+\infty} u_n x^n$$
 et $\psi(x) = \sum_{n=0}^{+\infty} v_n x^n$.

On explicitera en fonction de n, suivant la parité de n, les réels u_n et v_n .

- **II.B.3)** Calculer \tilde{v}_n (moyenne arithmétique des nombres v_0, \ldots, v_n).
- II.B.4) Construire à l'aide de ψ un exemple de suite $(a_n)_{n\geqslant 0}$ vérifiant II.1 mais ne vérifiant pas la propriété II.3.

Jusqu'à la fin de cette partie, on continue de supposer II.1 et on fait l'hypothèse supplémentaire :

$$\forall n \in \mathbb{N}, \ a_n \geqslant 0. \tag{II.4}$$

L'objectif principal, après quelques observations concernant la suite $(\widetilde{a}_n)_{n\geqslant 0}$, est de démontrer la **propriété II.3** (théorème de Hardy et Littlewood).

II.C - Majoration de la suite $(\widetilde{a}_n)_{n\geqslant 0}$

- **II.C.1)** Pour tout $x \in [0,1[$ et tout $n \in \mathbb{N}$, montrer que $f(x) \geqslant A_n x^n$.
- **II.C.2)** Montrer l'existence d'un entier N > 0 tel que

$$\forall n \geqslant N, \ f(e^{-1/n}) \leqslant \frac{2}{1 - e^{-1/n}}.$$

II.C.3) En déduire que la suite $(\widetilde{a}_n)_{n\geqslant 0}$ est majorée.

$II.D-Minoration,\ \grave{a}\ partir\ d'un\ certain\ rang,\ de\ (\widetilde{a}_n)_{n\geqslant 0}\ par\ un\ rcute{e}l>0$

On désigne par $\mu > 0$ un majorant de la suite $(\tilde{a}_n)_{n \geqslant 0} : \forall n \in \mathbb{N}, \, \tilde{a}_n \leqslant \mu$.

II.D.1) a) Pour tout
$$x \in]-1, 1[$$
, montrer que $(1-x) \sum_{k=0}^{+\infty} A_k x^k = f(x)$.

b) En déduire que pour tout $x \in [0,1[$ et tout $N \in \mathbb{N}^*$

$$\frac{f(x)}{1-x} \leqslant A_{N-1} \frac{1-x^N}{1-x} + \mu \sum_{k=N}^{+\infty} (k+1)x^k.$$

c) En déduire que pour tout $x \in [0,1[$ et tout $N \in \mathbb{N}^*$

$$f(x) \leqslant A_{N-1} + \mu \left((N+1)x^N + \frac{x^{N+1}}{1-x} \right).$$

II.D.2) Soit λ un réel strictement positif.

a) Montrer qu'il existe un entier $N_0 > 0$ tel que pour tout $N \ge N_0$,

$$f(e^{-\lambda/N}) \geqslant \frac{1}{2(1 - e^{-\lambda/N})} \geqslant \frac{N}{2\lambda}.$$

b) Montrer que pour tout $N \ge N_0$

$$\widetilde{a}_{N-1} \geqslant \frac{1}{2\lambda} - \mu e^{-\lambda} \left(1 + \frac{1}{N} + e^{-\lambda/N} \frac{1}{N(1 - e^{-\lambda/N})} \right).$$

- c) Déterminer en fonction de λ la limite, quand N tend vers l'infini, du membre de droite dans l'inégalité précédente.
- d) Montrer qu'il existe un réel $\lambda > 0$ tel que cette limite soit strictement positive.
- **II.D.3)** Conclure qu'il existe un réel $\nu > 0$ tel qu'à partir d'un certain rang on ait $\tilde{a}_n \geqslant \nu$.

II.E - Démonstration de la propriété II.3, due à Karamata

Soit $g:[0,1]\to\mathbb{R}$ la fonction telle que g(x)=1/x si $x\geqslant e^{-1}$ et g(x)=0 sinon.

On fixe un réel $\varepsilon \in]0, \mathrm{e}^{-1}[$. On définit deux applications continues $g^+, g^- : [0, 1] \to \mathbb{R}$ ainsi : $-g^+$ est affine sur $[\mathrm{e}^{-1} - \varepsilon, \mathrm{e}^{-1}]$ et coı̈ncide avec g sur $[0, \mathrm{e}^{-1} - \varepsilon] \cup [\mathrm{e}^{-1}, 1]$; $-g^-$ est affine sur $[\mathrm{e}^{-1}, \mathrm{e}^{-1} + \varepsilon]$ et coı̈ncide avec g sur $[0, \mathrm{e}^{-1}] \cup [\mathrm{e}^{-1} + \varepsilon, 1]$.

Pour tout entier N > 0 on pose $x_N = e^{-1/N}$.

On rappelle que dans cette sous-partie, on fait les hypothèses II.1 et II.4

- Calculer $\int_0^1 g^+(t) dt$ et $\int_0^1 g^-(t) dt$.
- Soit P un polynôme à coefficients réels. Montrer que

$$(1-x)\sum_{n=0}^{+\infty} a_n x^n P(x^n) \underset{\substack{x \to 1 \\ x < 1}}{\longrightarrow} \int_0^1 P(t) dt.$$

On considérera d'abord le cas particulier $P(x) = x^k$, où $k \in \mathbb{N}$.

II.E.3) Établir l'existence de deux polynômes P, Q à coefficients réels tels que :

$$\forall x \in [0, 1], \quad g^{-}(x) - \varepsilon \leqslant P(x) \leqslant g(x) \leqslant Q(x) \leqslant g^{+}(x) + \varepsilon.$$

II.E.4) Établir l'existence d'un entier $N_1 > 0$ tel que pour tout entier $N \ge N_1$,

$$(1 - x_N) \sum_{n=0}^{+\infty} a_n x_N^n P(x_N^n) \geqslant \int_0^1 P(t) dt - \varepsilon$$

 et

$$(1 - x_N) \sum_{n=0}^{+\infty} a_n x_N^n Q(x_N^n) \leqslant \int_0^1 Q(t) \, \mathrm{d}t + \varepsilon.$$

Déduire des trois questions précédentes que pour tout entier $N \geqslant N_1$ II.E.5)

$$1 - 5\varepsilon \leqslant (1 - x_N)A_N \leqslant 1 + 5\varepsilon.$$

II.E.6) Conclure.

• • • FIN • • •

