

Mathématiques 1

MP

2012

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrices autorisées

Notations

On note:

 $C(\mathbb{R})$ le \mathbb{C} -espace vectoriel des fonctions continues de \mathbb{R} dans \mathbb{C} .

 $C_b(\mathbb{R})$ le sous-espace vectoriel de $C(\mathbb{R})$ constitué des fonctions bornées appartenant à $C(\mathbb{R})$.

 $L^1(\mathbb{R})$ le sous-espace vectoriel de $C(\mathbb{R})$ constitué des fonctions intégrables sur \mathbb{R} et appartenant à $C(\mathbb{R})$.

 $L^2(\mathbb{R})$ le sous-espace vectoriel de $C(\mathbb{R})$ constitué des fonctions de carré intégrable sur \mathbb{R} et appartenant à $C(\mathbb{R})$.

Pour toute fonction f de $C_b(\mathbb{R})$, on pose $||f||_{\infty} = \sup |f(t)|$.

Pour toute fonction f de $L^1(\mathbb{R})$, on pose $||f||_1 = \int_{\mathbb{R}} |f(t)| \, dt$.

Pour toute fonction f de $L^2(\mathbb{R})$, on pose $||f||_2 = \sqrt{\int_{\mathbb{R}} |f(t)|^2 dt}$.

On admet que ces expressions définissent des normes sur les espaces en question.

Soit f une fonction complexe d'une variable réelle. Par définition, le support de f est l'adhérence de l'ensemble $A_f = \{x \in \mathbb{R} \mid f(x) \neq 0\}$. On dit que f est à support compact si son support est un compact de \mathbb{R} ; en d'autres termes, f est à support compact si et seulement s'il existe un réel $A \geqslant 0$ tel que f soit nulle en dehors de [-A,A].

Par définition, une approximation de l'unité est une suite de fonctions $(f_n)_{n\in\mathbb{N}}$, continues par morceaux et intégrables sur \mathbb{R} , vérifiant les conditions suivantes :

$$\begin{cases} \forall n \in \mathbb{N}, & f_n \text{ est positive sur } \mathbb{R} ; \\ \forall n \in \mathbb{N}, & \int_{\mathbb{R}} f_n = 1 ; \\ \forall \varepsilon > 0, & \lim_{n \to +\infty} \int_{-\infty}^{-\varepsilon} f_n = 0 \text{ et } \lim_{n \to +\infty} \int_{\varepsilon}^{+\infty} f_n = 0. \end{cases}$$

I Produit de convolution

Soit $f, g \in C(\mathbb{R})$. Lorsque la fonction $t \mapsto f(t)g(x-t)$ est intégrable sur \mathbb{R} , on pose

$$(f * g)(x) = \int_{\mathbb{R}} f(t)g(x - t) dt.$$

La fonction f * g est appelée produit de convolution de f par g.

I.A - Généralités

I.A.1) Dans chacun des deux cas suivants, montrer que f * g est définie et bornée sur \mathbb{R} et donner une majoration de $||f * g||_{\infty}$ pouvant faire intervenir $||\cdot||_1$, $||\cdot||_2$ ou $||\cdot||_{\infty}$.

a) $f \in L^1(\mathbb{R}), g \in C_b(\mathbb{R});$

b) $f, g \in L^2(\mathbb{R})$.

I.A.2) Soient $f, g \in C(\mathbb{R})$ telles que f * g(x) soit défini pour tout réel x. Montrer que f * g = g * f.

I.A.3) Montrer que si f et g sont à support compact, alors f * g est à support compact.

I.B – Produit de convolution de deux éléments de $L^2(\mathbb{R})$

Pour toute fonction h de $C(\mathbb{R})$ et tout réel α , on définit la fonction $T_{\alpha}(h)$ en posant $T_{\alpha}(h)(x) = h(x - \alpha)$ pour tout $x \in \mathbb{R}$

Dans cette sous-partie I.B, on suppose que f et g appartiennent à $L^2(\mathbb{R})$.

I.B.1) Montrer qu'une fonction h est uniformément continue sur \mathbb{R} si et seulement si $\lim_{\alpha \to 0} ||T_{\alpha}(h) - h||_{\infty} = 0$.

I.B.2) Pour tout réel α , montrer que $T_{\alpha}(f * g) = (T_{\alpha}(f)) * g$.

I.B.3) Pour tout réel α , montrer que $||T_{\alpha}(f * g) - f * g||_{\infty} \leq ||T_{\alpha}(f) - f||_{2} \times ||g||_{2}$.

- **I.B.4)** En déduire que f * g est uniformément continue sur \mathbb{R} dans le cas où f est à support compact.
- **I.B.5)** Montrer que f * g est uniformément continue sur \mathbb{R} dans le cas général.

I.C - Continuité, dérivabilité, séries de Fourier

- **I.C.1)** On suppose que $f \in L^1(\mathbb{R})$ et $g \in C_b(\mathbb{R})$.
- a) Montrer que f * g est continue.
- b) Montrer que si g est uniformément continue sur \mathbb{R} , alors f * g est uniformément continue sur \mathbb{R} .
- **I.C.2)** Soit k un entier naturel non nul. On suppose que g est de classe C^k sur \mathbb{R} et que toutes ses fonctions dérivées, jusqu'à l'ordre k, sont bornées sur \mathbb{R} .

Montrer que f * g est de classe C^k sur \mathbb{R} et préciser sa fonction dérivée d'ordre k.

- **I.C.3**) Dans cette question **I.C.3**, on suppose que g est continue, 2π -périodique et de classe C^1 par morceaux.
- a) Énoncer sans démonstration le théorème sur les séries de Fourier applicable aux fonctions continues, 2π périodiques et de classe C^1 par morceaux.
- b) Montrer que f * g est 2π -périodique et est somme de sa série de Fourier. Expliciter les coefficients de Fourier de f * g à l'aide des coefficients de Fourier de g et d'intégrales faisant intervenir f.

I.D - Approximation de l'unité

Soit $f \in C_b(\mathbb{R})$ et soit (δ_n) une suite de fonctions approximation de l'unité.

- **I.D.1)** Montrer que la suite $(f * \delta_n)_{n \in \mathbb{N}}$ converge simplement vers f sur \mathbb{R} .
- **I.D.2)** Montrer que si f est à support compact, alors la suite $(f * \delta_n)_{n \in \mathbb{N}}$ converge uniformément vers f sur \mathbb{R} .
- **I.D.3)** Pour tout entier naturel n, on note h_n la fonction définie sur [-1,1] par

$$h_n(t) = \frac{\left(1 - t^2\right)^n}{\lambda_n}$$

et nulle en dehors de [-1,1], le réel λ_n étant donné par la formule

$$\lambda_n = \int_{-1}^1 \left(1 - t^2\right)^n \mathrm{d}t.$$

- a) Montrer que la suite de fonctions $(h_n)_{n\in\mathbb{N}}$ est une approximation de l'unité.
- b) Montrer que si f est une fonction continue à support inclus dans $\left[-\frac{1}{2}, \frac{1}{2}\right]$, alors $f * h_n$ est une fonction polynomiale sur $\left[-\frac{1}{2}, \frac{1}{2}\right]$ et nulle en dehors de l'intervalle $\left[-\frac{3}{2}, \frac{3}{2}\right]$.
- c) En déduire une démonstration du théorème de Weierstrass : toute fonction complexe continue sur un segment de \mathbb{R} est limite uniforme sur ce segment d'une suite de fonctions polynomiales.
- **I.D.4)** Existe-t-il une fonction $g \in C_b(\mathbb{R})$ telle que pour toute fonction f de $L^1(\mathbb{R})$, on ait f * g = f?

II Transformée de Fourier

Pour toute fonction $f \in L^1(\mathbb{R})$, on appelle transformée de Fourier de f la fonction, notée \hat{f} , définie par

$$\forall x \in \mathbb{R} \quad \hat{f}(x) = \int_{\mathbb{R}} f(t) e^{-ixt} dt.$$

- II.A Pour toute fonction $f \in L^1(\mathbb{R})$, montrer que \hat{f} appartient à $C_b(\mathbb{R})$.
- II.B Transformée de Fourier d'un produit de convolution

Soit $f, g \in L^1(\mathbb{R})$.

- **II.B.1)** On suppose que g est bornée.
- $a) \ \ \text{Montrer que } f*g \text{ est intégrable sur } \mathbb{R} \text{ et déterminer } \int_{\mathbb{R}} f*g \text{ en fonction de } \int_{\mathbb{R}} f \text{ et } \int_{\mathbb{R}} g.$
- b) Montrer que $\widehat{f * g} = \widehat{f} \times \widehat{g}$.

II.B.2) Un contre-exemple

Montrer qu'il existe deux fonctions f et g dans $L^1(\mathbb{R})$ telle que f * g(0) ne soit pas défini.

II.C - Sinus cardinal

On définit, pour tout entier naturel non nul n, la fonction k_n par

$$\begin{cases} k_n(x) = 1 - \frac{|x|}{n} & \text{si } |x| \leqslant n; \\ k_n(x) = 0 & \text{sinon.} \end{cases}$$

II.C.1) Exprimer la transformée de Fourier $\hat{k}_n(x)$ à l'aide de la fonction définie par

$$\varphi(x) = \left\{ \begin{pmatrix} \frac{\sin x}{x} \end{pmatrix}^2 & \text{si } x \neq 0; \\ 1 & \text{si } x = 0. \end{cases}$$

II.C.2) Justifier que $\varphi \in L^1(\mathbb{R})$.

On admet que $\int_{\mathbb{R}} \varphi = \pi$. On pose $K_n = \frac{1}{2\pi} \hat{k}_n$.

II.C.3) Montrer que la suite de fonctions $(K_n)_{n\geqslant 1}$ est une approximation de l'unité.

II.D - Inversion de Fourier

Soit $f \in L^1(\mathbb{R})$ telle que $\hat{f} \in L^1(\mathbb{R})$. Pour tout réel t et tout entier naturel non nul n, on pose

$$I_n(t) = \frac{1}{2\pi} \int_{\mathbb{R}} k_n(x) \hat{f}(-x) e^{-itx} dx.$$

- **II.D.1)** Pour tout réel t et tout entier naturel non nul n, montrer que $I_n(t) = (f * K_n)(t)$.
- **II.D.2)** En déduire, pour tout réel t:

$$f(t) = \frac{1}{2\pi} \int_{\mathbb{D}} \hat{f}(x) e^{itx} dx.$$

III Convolution et codimension finie

Dans cette partie, on suppose que $g \in C_b(\mathbb{R})$. On s'intéresse à la codimension dans $L^1(\mathbb{R})$ du sous-espace vectoriel

$$N_q = \{ f \in L^1(\mathbb{R}) \mid f * g = 0 \}.$$

On note V_g l'espace vectoriel engendré par les fonctions $T_{\alpha}(g)$:

$$V_g = \operatorname{Vect} (T_{\alpha}(g))_{\alpha \in \mathbb{R}}$$

où, comme au I.B, on note $T_{\alpha}(g)$ la fonction $x \mapsto g(x - \alpha)$.

III.A – À toute fonction g de $C(\mathbb{R})$, on associe la forme linéaire φ_g sur $L^1(\mathbb{R})$ définie par

$$\varphi_g(f) = \int_{\mathbb{D}} f(t)g(-t)dt.$$

Soit (g_1, \ldots, g_p) une famille d'éléments de $C_b(\mathbb{R})$.

III.A.1) Montrer que la famille (g_1, \ldots, g_p) est libre si et seulement si la famille $(\varphi_{g_1}, \ldots, \varphi_{g_p})$ est libre.

III.A.2) Soit E un espace vectoriel de dimension infinie et $(f_n)_{n\in\mathbb{N}}$ une famille de formes linéaires sur E. On note

$$K = \bigcap_{n \in \mathbb{N}} \operatorname{Ker}(f_n).$$

Montrer que la codimension de K dans E est égale au rang de la famille $(f_n)_{n\in\mathbb{N}}$ dans l'espace dual E^* (on commencera par le cas où ce rang est fini).

III.A.3) Montrer que la codimension de N_q dans $L^1(\mathbb{R})$ est égale à la dimension de V_q .

III.A.4)

a) Soit $\beta \in \mathbb{R}$ et soit g la fonction définie par $g(t) = e^{i\beta t}$ pour tout $t \in \mathbb{R}$. Déterminer la codimension de N_g dans $L^1(\mathbb{R})$.

b) Soit n un entier naturel. Montrer qu'il existe une fonction g de $C_b(\mathbb{R})$ telle que N_g soit de codimension n dans $L^1(\mathbb{R})$.

III.B - Hypothèse A

Soit $g \in C_b(\mathbb{R})$. On dit que g vérifie l'hypothèse A si g est une fonction de classe C^{∞} sur \mathbb{R} , bornée et dont les fonctions dérivées à tout ordre sont bornées sur \mathbb{R} .

III.B.1) Montrer que, si N_g est de codimension finie dans $L^1(\mathbb{R})$ et si g vérifie l'hypothèse A, alors g est solution d'une équation différentielle linéaire à coefficients constants.

III.B.2) En déduire l'ensemble des fonctions g vérifiant l'hypothèse A et telles que N_g soit de codimension finie dans $L^1(\mathbb{R})$.

III.C - Cas général

Soit $g \in C_b(\mathbb{R})$. On suppose que N_g est de codimension finie n dans $L^1(\mathbb{R})$.

III.C.1) Montrer qu'il existe des réels $\alpha_1, \alpha_2, \dots, \alpha_n$ et des fonctions m_1, \dots, m_n d'une variable réelle telles que, pour tout réel α ,

$$T_{\alpha}(g) = \sum_{i=1}^{n} m_i(\alpha) T_{\alpha_i}(g).$$

III.C.2) Soit F un sous-espace de dimension finie, notée p, de $C(\mathbb{R})$. Pour toute fonction $f \in C(\mathbb{R})$ et pour tout réel x, on note $e_x(f) = f(x)$.

a) Montrer qu'il existe des réels a_1, \ldots, a_p tels que $(e_{a_1}, \ldots, e_{a_p})$ soit une base de l'espace dual F^* .

b) Si (f_1, \ldots, f_p) est une famille d'éléments de F, montrer que $\text{Det}(f_i(a_j))_{1 \leqslant i,j \leqslant p}$ est non nul si et seulement si (f_1, \ldots, f_p) est une base de F.

III.C.3) En appliquant la question **III.C.2**) à V_g , montrer que si g est de classe C^k alors les fonctions m_1, \ldots, m_n sont de classe C^k .

III.C.4) Montrer que, pour tout entier naturel r non nul, V_{h_r*g} est de dimension finie (les fonctions h_r sont celles de la question I.D.3).

III.C.5) Montrer que pour r assez grand la dimension de V_{h_r*g} est égale à celle de V_g .

III.C.6) En déduire que les fonctions m_1, \ldots, m_n sont de classe C^{∞} .

III.C.7) Déterminer l'ensemble des fonctions $g \in C_b(\mathbb{R})$ telles que N_g soit de codimension finie dans $L^1(\mathbb{R})$.

