SESSION 2012 PSIM102

EPREUVE SPECIFIQUE - FILIERE PSI

MATHEMATIQUES 1

Durée: 4 heures

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont autorisées

Le sujet comporte 7 pages.

Notations

On désigne par \mathbb{R} l'ensemble des nombres réels et par \mathbb{C} l'ensemble des nombres complexes. Dans tout le problème, on note n un entier naturel non nul et on désigne par \mathbb{K} l'ensemble \mathbb{R} ou l'ensemble \mathbb{C} .

On note $\mathcal{M}_n(\mathbb{K})$ (respectivement $\mathcal{M}_{n,1}(\mathbb{K})$) le \mathbb{K} -espace vectoriel des matrices carrées à n lignes (respectivement le \mathbb{K} -espace vectoriel des matrices colonnes à n lignes), à coefficients dans \mathbb{K} . La notation $A = (a_{i,j})$ signifie que $a_{i,j}$ est le coefficient de la ligne i et de la colonne j de la matrice A. Lorsqu'une matrice A de $\mathcal{M}_n(\mathbb{K})$ est inversible, on note A^{-1} sa matrice inverse.

Soient I un intervalle de \mathbb{R} et F un espace vectoriel de matrices à coefficients dans \mathbb{K} .

Une application $A: I \to F$ est continue (respectivement dérivable), lorsque, pour t décrivant I, les coefficients de la matrice A(t) sont des fonctions continues (respectivement dérivables) de I dans \mathbb{K} . On dira en abrégé que A est une matrice continue (respectivement dérivable) sur I et on notera $A(t) = (a_{i,j}(t))$ pour tout t dans I. Lorsque cette matrice est dérivable, on note $A'(t) = (a'_{i,j}(t))$ la matrice dérivée.

Pour deux matrices dérivables M(t) et N(t), dont le produit existe, on admettra la formule (MN)'(t) = M'(t)N(t) + M(t)N'(t).

Équations différentielles matricielles

Soit I un intervalle de \mathbb{R} , soient A une matrice carrée d'ordre n continue sur I et B une matrice colonne à n lignes continue sur I, les coefficients des matrices A et B étant des fonctions à valeurs dans \mathbb{K} .

On considère l'équation différentielle (E): X'(t) = A(t)X(t) + B(t) où les solutions X(t) sont des matrices colonnes à n lignes dérivables sur I, dont les coefficients sont des fonctions à valeurs dans \mathbb{K} .

On note (E_0) : X'(t) = A(t)X(t) l'équation différentielle homogène associée.

On dira que (E) et (E_0) sont des équations différentielles matricielles. On note S_0 l'ensemble des solutions de (E_0) . On rappelle que :

- S_0 est un \mathbb{K} -espace vectoriel de dimension n;
- les solutions de (E) s'obtiennent en ajoutant à l'ensemble S_0 une solution particulière de (E);
- pour tout t_0 de I et pour toute matrice V de $\mathcal{M}_{n,1}(\mathbb{K})$, il existe une solution et une seule X de (E) sur I vérifiant $X(t_0) = V$ (existence et unicité de la solution sur I du problème de Cauchy).

On appelle système fondamental de solutions de (E_0) , toute base (X_1, \ldots, X_n) de S_0 . On note $W(t) = (X_1(t), \ldots, X_n(t))$ la matrice carrée d'ordre n dont les $X_j(t)$ sont les colonnes et on dit que W(t) est la matrice wronskienne de ce système fondamental de solutions de (E_0) .

Objectifs

Dans la première partie, il faut résoudre un exemple d'équation différentielle matricielle à coefficients constants.

Dans la deuxième partie, on traite le cas général de l'équation différentielle matricielle (E) en définissant la matrice résolvante de (E_0) .

Dans la troisième partie, on utilise les résultats de la deuxième partie pour résoudre une équation différentielle scalaire du second ordre.

Partie I. Cas d'une matrice à coefficients constants

On considère les équations différentielles :

$$(E): X'(t) = AX(t) + B(t)$$
 et $(E_0): X'(t) = AX(t)$

où A désigne une matrice à coefficients constants appartenant à $\mathcal{M}_n(\mathbb{K})$. On suppose que $I = \mathbb{R}$.

- I.1 Soient V un vecteur non nul de $\mathcal{M}_{n,1}(\mathbb{K})$ et λ un élément de \mathbb{K} . Montrer que la matrice $X(t) = e^{\lambda t}V$ est une solution de (E_0) si et seulement si V est un vecteur propre de A associé à la valeur propre λ .
- I.2 Un exemple

On suppose
$$n = 4$$
, $A = \begin{pmatrix} 0 & -1 & 1 & -1 \\ 0 & 2 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & -1 & 1 & 0 \end{pmatrix}$ et $B(t) = \begin{pmatrix} te^t \\ e^t \\ 0 \\ -te^t \end{pmatrix}$.

I.2.1 On suppose $\mathbb{K} = \mathbb{C}$ et on considère l'équation différentielle (E_0) .

Déterminer les valeurs propres et les sous-espaces propres de la matrice A.

En déduire un système fondamental de solutions, puis la solution générale complexe de (E_0) sur l'intervalle $I = \mathbb{R}$.

I.2.2 On suppose $\mathbb{K} = \mathbb{R}$ et on considère l'équation (E): X'(t) = AX(t) + B(t).

On note
$$X(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \end{pmatrix}$$
.

Écrire le système d'équations différentielles linéaires scalaires vérifié par les quatre fonctions $x_k(t)$.

Déterminer la solution générale réelle de (E) sur l'intervalle $I = \mathbb{R}$ (on pourra déterminer successivement $x_2(t)$, puis $x_3(t)$, puis $x_1(t)$ et $x_4(t)$).

Préciser la solution
$$X$$
 de (E) telle que $X(0) = \begin{pmatrix} -1 \\ -1 \\ -1 \\ 0 \end{pmatrix}$.

Partie II. Matrice résolvante

On reprend le cas général d'une équation différentielle (E): X'(t) = A(t)X(t) + B(t) définie dans la partie notations. On prendra I un intervalle de \mathbb{R} , $t \in I$ et $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

On note S_0 l'espace vectoriel de dimension n des solutions de l'équation différentielle linéaire homogène (E_0) associée.

Pour $t_0 \in I$ donné, on note Φ_{t_0} l'application de S_0 dans $\mathcal{M}_{n,1}(\mathbb{K})$ définie par :

$$\forall X \in S_0, \ \Phi_{t_0}(X) = X(t_0) \ .$$

D'après le rappel sur le problème de Cauchy, l'application Φ_{t_0} est un isomorphisme de S_0 sur $\mathcal{M}_{n,1}(\mathbb{K})$.

Soit X_1, \ldots, X_n un système fondamental de solutions de (E_0) .

- **II.1** Soient t_0 et t dans I. Soit $V \in \mathcal{M}_{n,1}(\mathbb{K})$ et soit $X \in S_0$ la solution de (E_0) telle que $X(t_0) = V$. Justifier l'égalité $(\Phi_t \circ \Phi_{t_0}^{-1})(V) = X(t)$.
- **II.2** On rapporte l'espace vectoriel S_0 à la base (X_1, \ldots, X_n) et l'espace vectoriel $\mathcal{M}_{n,1}(\mathbb{K})$ à sa base canonique (C_1, \ldots, C_n) .
 - II.2.1 Soit $t_0 \in I$. Prouver que la matrice, dans ce couple de bases, de l'application linéaire Φ_{t_0} de S_0 dans $\mathcal{M}_{n,1}(\mathbb{K})$ est la matrice wronskienne :

$$W(t_0) = (X_1(t_0), \dots, X_n(t_0)).$$

II.2.2 Soient t_0 et t dans I. On note $R(t, t_0) = W(t) (W(t_0))^{-1}$. Prouver que la matrice $R(t, t_0)$ ne dépend pas du système fondamental (X_1, \ldots, X_n) de solutions choisi.

La matrice $R(t, t_0)$ s'appelle la résolvante de l'équation différentielle linéaire (E_0) .

II.3 Propriétés de la résolvante

Soient t, t_0, t_1 et t_2 dans I.

- II.3.1 Pour simplifier, on note $R'(t, t_0)$, la dérivée par rapport à t de la matrice $R(t, t_0)$. Montrer que $R'(t, t_0) = A(t)R(t, t_0)$. En déduire que, pour tout $V \in \mathcal{M}_{n,1}(\mathbb{K})$, la matrice $X(t) = R(t, t_0)V$ est la solution de (E_0) telle que $X(t_0) = V$.
- **II.3.2** Montrer que $R(t_2, t_1)R(t_1, t_0) = R(t_2, t_0)$. En déduire $(R(t, t_0))^{-1} = R(t_0, t)$.

II.4 Application de la résolvante : recherche d'une solution particulière de l'équation (E)

Soient t et t_0 dans I, on cherche une solution particulière de (E) sous la forme :

$$X(t) = R(t, t_0)V(t) ,$$

où $V: I \to \mathcal{M}_{n,1}(\mathbb{K})$ est une application dérivable à déterminer.

II.4.1 On suppose que $X(t) = R(t, t_0)V(t)$ est une solution de (E). Montrer que :

$$R(t,t_0)V'(t) = B(t) .$$

- **II.4.2** En déduire que $V(t) = \int_{t_0}^t R(t_0, u)B(u)du$ est une solution de (E) (la matrice V(t) étant la matrice colonne dont les coefficients sont les intégrales des coefficients de la matrice colonne $R(t_0, u)B(u)$).
- **II.4.3** Montrer que $Y(t) = \int_{t_0}^t R(t, u)B(u)du$ est une solution particulière de (E).

Partie III. Une application de la résolvante

Dans cette partie, $\mathbb{K} = \mathbb{R}$.

III.1 On considère l'équation différentielle :

$$(e_0)$$
: $t(t-1)y'' + 3y' - 6y = 0$,

où y = y(t) est une fonction deux fois dérivable définie sur un intervalle I.

- **III.1.1** En cherchant les polynômes solutions de (e_0) sous la forme $y(t) = a_m t^m + \cdots + a_0$ avec $a_m \neq 0$, déterminer le degré de ces polynômes puis déterminer tous les polynômes solutions de (e_0) sur \mathbb{R} . Préciser le polynôme P solution de (e_0) et vérifiant P(0) = 1.
- **III.1.2** Vérifier que la fonction $Q(t) = \frac{1}{(1-t)^2}$ est solution de (e_0) sur l'intervalle]-1;1[.
- **III.1.3** On cherche les solutions non nulles de (e_0) développables en série entière : $y(t) = \sum_{k=0}^{+\infty} a_k t^k$ pour |t| < R, où R > 0 est le rayon de convergence de la série.
 - **III.1.3.1** Pour tout entier naturel k, écrire, selon les valeurs de k, les relations entre a_k et a_{k+1} . Déterminer le rayon de convergence R.

- **III.1.3.2** Montrer qu'il existe un entier non nul k_0 à déterminer, tel que pour $k \ge k_0$, le coefficient a_k s'exprime en fonction de a_{k_0} . Donner l'expression de a_k en fonction de a_{k_0} . Comment retrouve-t-on les fonctions P et Q parmi ces solutions?
- III.2 On considère l'équation différentielle :

$$(\mathcal{E}) : y'' + a(t)y' + b(t)y = \varphi(t) ,$$

où a, b, φ sont des fonctions continues définies sur un intervalle I.

- **III.2.1** On définit la fonction z par z(t) = y'(t) et on note $X(t) = \begin{pmatrix} y(t) \\ z(t) \end{pmatrix}$. Déterminer une matrice carrée A(t) et une matrice colonne B(t) telles que l'équation différentielle (\mathcal{E}) s'écrive matriciellement sous la forme (E): X'(t) = A(t)X(t) + B(t).
- **III.2.2** On note (f(t), g(t)) une base de l'espace vectoriel des solutions sur I de l'équation différentielle (\mathcal{E}_0) : y'' + a(t)y' + b(t)y = 0.

Les matrices $\begin{pmatrix} f(t) \\ f'(t) \end{pmatrix}$, $\begin{pmatrix} g(t) \\ g'(t) \end{pmatrix}$ forment alors un système fondamental de solutions de l'équation différentielle (E_0) : X'(t) = A(t)X(t).

Soit $W(t) = \begin{pmatrix} f(t) & g(t) \\ f'(t) & g'(t) \end{pmatrix}$ la matrice wronskienne de ce système fondamental de solutions.

Pour t et t_0 dans I, on note en abrégé f pour f(t), f_0 pour $f(t_0)$, g pour g(t), g_0 pour $g(t_0)$, f' pour f'(t), f'_0 pour $f'(t_0)$, g' pour g'(t) et g'_0 pour $g'(t_0)$.

Exprimer les coefficients de la matrice $(W(t_0))^{-1}$ en fonction de f_0, g_0, f'_0, g'_0 puis ceux de la matrice résolvante $R(t, t_0)$, en fonction de $f, f_0, g, g_0, f', f'_0, g', g'_0$.

III.3 On considère l'équation différentielle :

(e) :
$$t(t-1)y'' + 3y' - 6y = 20t^4$$

et on prend I =]0; 1[.

III.3.1 Écrire l'équation différentielle (e) sous la forme de l'équation différentielle (\mathcal{E}) de la question **III.2**.

En déduire les matrices A(t) et B(t) telles que l'équation différentielle (e) s'écrive matriciellement sous la forme (E): X'(t) = A(t)X(t) + B(t).

III.3.2 On applique les résultats de la question **III.2** avec f(t) = P(t) et g(t) = Q(t), où P et Q sont les fonctions définies dans **III.1**. Pour t et u dans]0;1[, expliciter le déterminant de W(u) et la valeur de Q(t)P(u) - P(t)Q(u).

III.3.3 Soient t et t_0 dans]0; 1[. En appliquant les résultats précédents de cette partie et de la partie II, montrer que la fonction :

$$y(t) = \frac{1}{(1-t)^2} \int_{t_0}^t (4t^5 - 5t^4 - 4u^5 + 5u^4) du$$

est une solution particulière de l'équation différentielle (e).

Montrer que cette solution est encore valable pour $t_0 = 0$.

Expliciter la solution générale de (e) sur l'intervalle [0;1[. Quelles sont les solutions de (e) sur [0;1[qui vérifient y(0)=y'(0)=0 ?

Fin de l'énoncé