

Mathématiques 2

MP

2011

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrices autorisées

Rappels et notations

Pour tout entier naturel non nul n, on note :

- [1; n] l'ensemble des entiers naturels k tels que $1 \le k \le n$;
- $-\mathcal{M}_n(\mathbb{R})$ (respectivement $\mathcal{M}_{n,1}(\mathbb{R})$) l'espace vectoriel des matrices carrées à n lignes et n colonnes (respectivement l'espace vectoriel des matrices colonnes à n lignes) à coefficients dans \mathbb{R} ;
- $-\mathcal{S}_n(\mathbb{R})$ le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ constitué des matrices symétriques.

Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{S}_n(\mathbb{R})$; on dit que A est positive (respectivement définie positive) si :

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \quad {}^t XAX \geqslant 0 \quad \text{(respectivement } {}^t XAX > 0 \text{ si } X \neq 0\text{)}.$$

L'espace vectoriel des polynômes à coefficients réels est noté $\mathbb{R}[X]$, et, pour tout entier naturel p, le sous-espace vectoriel des polynômes de degré inférieur ou égal à p est noté $\mathbb{R}_p[X]$.

Objectifs

La première partie a pour but de démontrer une caractérisation des matrices réelles définies positives, à l'aide des déterminants de certaines matrices extraites.

La deuxième partie aborde l'étude d'une suite de polynômes orthogonaux pour un produit scalaire défini à l'aide d'une intégrale.

La troisième partie introduit les matrices de Hilbert et leur inverse, dont certaines propriétés sont étudiées dans la partie IV.

I Caractérisation des matrices symétriques définies positives

- I.A Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{S}_n(\mathbb{R})$.
- **I.A.1)** Montrer que A est positive si et seulement si toutes ses valeurs propres sont positives.
- I.A.2) Montrer que A est définie positive si et seulement si toutes ses valeurs propres sont strictement positives.
- I.B Pour $n \in \mathbb{N}^*$, $A \in \mathcal{S}_n(\mathbb{R})$ et $i \in [1; n]$, on note $A^{(i)}$ la matrice carrée d'ordre i extraite de A, constituée par les i premières lignes et les i premières colonnes de A.

Le but de cette question est de démontrer l'équivalence suivante :

A est définie positive
$$\iff \forall i \in [1; n], \det(A^{(i)}) > 0.$$

I.B.1) Soit $A \in \mathcal{S}_n(\mathbb{R})$. On suppose que A est définie positive.

Pour tout $i \in [1; n]$, montrer que la matrice $A^{(i)}$ est définie positive et en déduire que $\det(A^{(i)}) > 0$.

Pour tout $n \in \mathbb{N}^*$, on dira qu'une matrice A de $\mathcal{S}_n(\mathbb{R})$ vérifie la propriété \mathcal{P}_n si $\det(A^{(i)}) > 0$ pour tout $i \in [1; n]$.

- **I.B.2)** Dans les cas particuliers n = 1 et n = 2, montrer directement que toute matrice $A \in \mathcal{S}_n(\mathbb{R})$ vérifiant la propriété \mathcal{P}_n est définie positive.
- **I.B.3)** Soit $n \in \mathbb{N}^*$. On suppose que toute matrice de $\mathcal{S}_n(\mathbb{R})$ vérifiant la propriété \mathcal{P}_n est définie positive. On considère une matrice A de $\mathcal{S}_{n+1}(\mathbb{R})$ vérifiant la propriété \mathcal{P}_{n+1} et on suppose par l'absurde que A n'est pas définie positive.
- a) Montrer alors que A admet deux vecteurs propres linéairement indépendants associés à des valeurs propres (non nécessairement distinctes) strictement négatives.
- b) En déduire qu'il existe $X \in \mathcal{M}_{n+1,1}(\mathbb{R})$ dont la dernière composante est nulle et tel que ${}^tXAX < 0$.
- c) Conclure.
- I.C Soit A une matrice de $S_n(\mathbb{R})$. A-t-on l'équivalence suivante :

A est positive
$$\iff \forall i \in [1; n], \det(A^{(i)}) \geqslant 0$$
?

I.D — Écrire une procédure, dans le langage Maple ou Mathematica, qui prend en entrée une matrice $M \in \mathcal{S}_n(\mathbb{R})$ et qui, en utilisant la caractérisation du I.B, renvoie « true » si la matrice M est définie positive, et « false » dans le cas contraire.

II Étude d'une suite de polynômes

On définit la suite de polynômes $(P_n)_{n\in\mathbb{N}}$ par :

$$\begin{cases} P_0 = 1 \\ \forall n \in \mathbb{N}^*, \ P_n = [X(X - 1)]^n \end{cases}$$

De plus, on pose:

$$\forall (P,Q) \in (\mathbb{R}[X])^2, \quad \langle P,Q \rangle = \int_0^1 P(t)Q(t) dt.$$

II.A – Montrer que l'application $(P,Q) \mapsto \langle P,Q \rangle$ est un produit scalaire sur $\mathbb{R}[X]$.

II.B – On note $P_n^{(n)}$ le polynôme dérivé n fois de P_n .

Déterminer le degré de $P_n^{(n)}$ et calculer $P_n^{(n)}(1)$.

On définit la suite de polynômes $(L_n)_{n\in\mathbb{N}}$ par :

$$\begin{cases} L_0 = 1 \\ \forall n \in \mathbb{N}^*, \quad L_n = \frac{1}{P_n^{(n)}(1)} P_n^{(n)}. \end{cases}$$

II.C - Soit $n \in \mathbb{N}^*$. Montrer que, pour tout $Q \in \mathbb{R}_{n-1}[X]$, $\langle Q, L_n \rangle = 0$. Indication: on pourra intégrer par parties.

II.D -

II.D.1) Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^1 P_n(u) du$.

Calculer, pour tout $n \in \mathbb{N}$, la valeur de I_n .

II.D.2) En déduire pour tout $n \in \mathbb{N}$ la relation : $\langle L_n, L_n \rangle = \frac{1}{2n+1}$.

II.E – Déterminer une famille de polynômes $(K_n)_{n\in\mathbb{N}}$ vérifiant les deux conditions suivantes :

i. pour tout $n \in \mathbb{N}$, le degré de K_n vaut n et son coefficient dominant est strictement positif;

ii. pour tout $N \in \mathbb{N}$, $(K_n)_{0 \le n \le N}$ est une base orthonormale de $\mathbb{R}_N[X]$ pour le produit scalaire $\langle \cdot, \cdot \rangle$. Justifier l'unicité d'une telle famille.

II.F - Calculer K_0 , K_1 et K_2 .

III Matrices de Hilbert

Pour tout $n \in \mathbb{N}^*$, on définit la matrice H_n par :

$$\forall (i,j) \in [1;n]^2, (H_n)_{i,j} = \frac{1}{i+j-1}$$

où $(H_n)_{i,j}$ désigne le coefficient de place (i,j) de la matrice H_n . On note de plus $\Delta_n = \det(H_n)$.

III.A – Étude de quelques propriétés de H_n

III.A.1) Calculer H_2 et H_3 . Montrer que ce sont des matrices inversibles et déterminer leur inverse. Dans les questions suivantes de III.A, on désigne par n un entier naturel non nul.

III.A.2) Montrer la relation :

$$\Delta_{n+1} = \frac{(n!)^4}{(2n)! (2n+1)!} \, \Delta_n$$

Indication : on pourra commencer par soustraire la dernière colonne de Δ_{n+1} à toutes les autres.

III.A.3) En déduire l'expression de Δ_n en fonction de n (on fera intervenir les quantités $c_m = \prod_{i=1}^{m-1} i!$ pour des entiers m adéquats).

III.A.4) Prouver que H_n est inversible, puis que $\det(H_n^{-1})$ est un entier.

III.A.5) Démontrer que H_n admet n valeurs propres réelles (comptées avec leur ordre de multiplicité) strictement positives.

III.B - Approximation au sens des moindres carrés

On note $C^0([0;1],\mathbb{R})$ l'espace vectoriel des fonctions continues de [0;1] dans \mathbb{R} . On convient d'identifier l'espace $\mathbb{R}[X]$ au sous-espace vectoriel de $C^0([0;1],\mathbb{R})$ constitué des fonctions polynomiales de [0,1] dans \mathbb{R} ; ainsi, pour tout entier naturel i, le polynôme X^i est confondu avec la fonction polynomiale définie par $X^i(t) = t^i$ pour tout $t \in [0,1]$.

On étend à $C^0([0;1],\mathbb{R})$ le produit scalaire $\langle \cdot, \cdot \rangle$ de la partie II en posant

$$\forall f, g \in C^0([0;1], \mathbb{R}), \quad \langle f, g \rangle = \int_0^1 f(t)g(t) dt.$$

(On ne demande pas de vérifier qu'il s'agit d'un produit scalaire sur $C^0([0;1],\mathbb{R})$.)

On note $\|\cdot\|$ la norme associée à ce produit scalaire : pour toute fonction $f \in C^0([0;1],\mathbb{R})$, on a donc

$$||f|| = \sqrt{\langle f, f \rangle}$$

III.B.1) Soit $n \in \mathbb{N}$. Montrer qu'il existe un unique polynôme $\Pi_n \in \mathbb{R}_n[X]$ tel que

$$\|\Pi_n - f\| = \min_{Q \in \mathbb{R}_n[X]} \|Q - f\|$$

III.B.2) Montrer que la suite $(\|\Pi_n - f\|)_{n \in \mathbb{N}}$ est décroissante et converge vers 0.

III.B.3) Montrer que H_n est la matrice du produit scalaire $\langle \cdot, \cdot \rangle$, restreint à $\mathbb{R}_{n-1}[X]$, dans la base canonique de $\mathbb{R}_{n-1}[X]$.

III.B.4) Calculer les coefficients de Π_n à l'aide de la matrice H_{n+1}^{-1} et des réels $\langle f, X^i \rangle$.

III.B.5) Déterminer explicitement Π_2 lorsque f est la fonction définie pour tout $t \in [0,1]$ par $f(t) = \frac{1}{1+t^2}$.

IV Propriétés des coefficients de H_n^{-1}

IV.A - Somme des coefficients de H_n^{-1}

Pour $n \in \mathbb{N}^*$ et $(i,j) \in [1,n]^2$, on note $h_{i,j}^{(-1,n)}$ le coefficient de place (i,j) de la matrice H_n^{-1} et on désigne par s_n la somme des coefficients de la matrice H_n^{-1} , c'est-à-dire :

$$s_n = \sum_{1 \leqslant i, j \leqslant n} h_{i,j}^{(-1,n)}$$

IV.A.1) Calculer s_1 , s_2 et s_3 . Conjecturer de manière générale la valeur de s_n en fonction de n.

IV.A.2) Soit $n \in \mathbb{N}^*$.

a) Montrer qu'il existe un unique n-uplet de nombres réels $(a_p^{(n)})_{0\leqslant p\leqslant n-1}$ vérifiant le système de n équations linéaires à n inconnues suivant :

$$\begin{cases} a_0^{(n)} + \frac{a_1^{(n)}}{2} + \cdots + \frac{a_{n-1}^{(n)}}{n} = 1 \\ \frac{a_0^{(n)}}{2} + \frac{a_1^{(n)}}{3} + \cdots + \frac{a_{n-1}^{(n)}}{n+1} = 1 \\ \vdots & \vdots & \vdots & \vdots \\ \frac{a_0^{(n)}}{n} + \frac{a_1^{(n)}}{n+1} + \cdots + \frac{a_{n-1}^{(n)}}{2n-1} = 1 \end{cases}$$

b) Montrer que $s_n = \sum_{p=0}^{n-1} a_p^{(n)}$.

On définit, pour tout $n \in \mathbb{N}^*$, le polynôme S_n par : $S_n = a_0^{(n)} + a_1^{(n)}X + \cdots + a_{n-1}^{(n)}X^{n-1}$.

Dans les questions suivantes de IV.A, on désigne par n un entier naturel non nul.

IV.A.3) Montrer que

$$\forall Q = \alpha_0 + \alpha_1 X + \dots + \alpha_{n-1} X^{n-1} \in \mathbb{R}_{n-1}[X], \ \langle S_n, Q \rangle = \sum_{n=0}^{n-1} \alpha_p$$

IV.A.4) Exprimer s_n à l'aide de la suite de polynômes $(K_p)_{p\in\mathbb{N}}$ définie à la question II.E.

IV.A.5) Pour tout $p \in [0; n-1]$, calculer $K_p(1)$.

IV.A.6) Déterminer la valeur de s_n .

IV.B - Les coefficients de H_n^{-1} sont des entiers

Pour $n \in \mathbb{N}$ et $k \in [0; n]$, on note $\binom{n}{k}$ le coefficient binomial $\binom{n}{k} = \frac{n!}{k! \; (n-k)!}$.

IV.B.1) Soit $p \in \mathbb{N}^*$. Montrer que $\binom{2p}{p}$ est un entier pair.

En déduire que, si $n \in \mathbb{N}^*$ et $p \in [1; n]$, alors $\binom{n+p}{p}\binom{n}{p}$ est un entier pair.

IV.B.2) Pour tout $n \in \mathbb{N}$, montrer qu'on peut écrire :

$$K_n = \sqrt{2n+1} \Lambda_n$$

où Λ_n est un polynôme à coefficients entiers que l'on explicitera.

Parmi les coefficients de Λ_n , lesquels sont pairs?

IV.B.3)

Soit $n \in \mathbb{N}^*$.

- a) Calculer $h_{i,i}^{(-1,n)}$ pour tout $i \in [1;n]$; on donnera en particulier une expression très simple de $h_{1,1}^{(-1,n)}$ et $h_{n,n}^{(-1,n)}$ en fonction de n.
- b) Calculer $h_{i,j}^{(-1,n)}$ pour tout couple $(i,j) \in [1;n]^2$; en déduire que les coefficients de H_n^{-1} sont des entiers.
- c) Montrer que $h_{i,j}^{(-1,n)}$ est divisible par 4 pour tout couple $(i,j) \in [\![2;n]\!]^2$.

 $\bullet \hspace{0.1cm} \bullet \hspace{0.1cm} \bullet \hspace{0.1cm} \text{FIN} \hspace{0.1cm} \bullet \hspace{0.1cm} \bullet \hspace{0.1cm} \bullet$