SESSION 2011 PSIM102

EPREUVE SPECIFIQUE - FILIERE PSI

MATHEMATIQUES 1

Durée: 4 heures

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont autorisées

Le sujet comporte 6 pages.

Notations

On note : |z| le module du nombre complexe z,

J un intervalle de $[0,+\infty[$,

f une fonction définie sur J à valeurs dans $\,\mathbb{R}$ ou $\,\mathbb{C}$,

g une fonction définie sur $[0,+\infty[$ à valeurs dans $\mathbb R$ ou $\mathbb C$.

Sous réserve de son existence on note : $\tilde{f}_g(x) = \int_{t}^{\infty} f(t)g(xt)dt$ pour $x \in]0,+\infty[$.

Chaque fois qu'aucune confusion ne sera possible, on notera $\tilde{f}(x)$ au lieu de $\tilde{f}_{g}(x)$.

Objectifs

Pour différentes hypothèses sur la fonction f, sur l'intervalle J et pour deux choix de la fonction g, on se propose de déterminer la limite de $\tilde{f}_g(x)$ lorsque le nombre réel x tend vers $+\infty$.

Dans la partie I, on étudie un exemple explicite avec application à des calculs de sommes de séries. Dans la partie II, on considère une fonction f définie sur $[0,+\infty[$ à valeurs réelles et l'objectif est d'obtenir la limite en $+\infty$ de $\tilde{f}_g(x)$ lorsque $g(t) = |\sin(t)|$, lorsque f est de classe C^1 ou lorsque f est continue par morceaux.

PARTIE I

Une étude de séries

I.1. Étude de la fonction L

Pour tout x réel tel que la série entière $\sum_{k\geq 1} (-1)^{k-1} \frac{x^k}{k}$ converge, on note $L(x) = \sum_{k=1}^{+\infty} (-1)^{k-1} \frac{x^k}{k}$ sa somme.

- **I.1.1.** Préciser le rayon de convergence de cette série entière, montrer que la fonction L est définie sur l'intervalle]-1,1] et expliciter L(x) pour x appartenant à]-1,1[.
- **I.1.2.** Montrer, avec soin, que la fonction L est continue sur l'intervalle [0,1]. En déduire que $L(1) = \ln(2)$ (où ln désigne la fonction logarithme népérien).

I.2. Étude de la série
$$\sum_{k>1} \frac{1}{k} \cos\left(\frac{2k\pi}{3}\right)$$

On considère la suite $(a_k)_{k\in\mathbb{N}^*}$ définie par :

 $\text{Pour tout } \ p \in \mathbb{N}^* \ : \ a_{3p} = -\frac{2}{3p} \quad \text{et pour tout } \ p \in \mathbb{N} \ : \ a_{3p+1} = \frac{1}{3p+1} \ \text{et } \ a_{3p+2} = \frac{1}{3p+2} \ .$

I.2.1. Montrer que :
$$\sum_{k=1}^{3p} a_k = \sum_{k=p+1}^{3p} \frac{1}{k} = \frac{1}{p} \sum_{h=1}^{2p} \frac{1}{1 + \frac{h}{p}}.$$

- **1.2.2.** Déterminer la limite de la somme $\sum_{k=1}^{3p} a_k$ lorsque p tend vers $+\infty$ (on pourra considérer la fonction qui à t associe $\frac{1}{1+t}$ sur un intervalle convenable). En déduire la convergence de la série $\sum_{k\geq 1} a_k$ et préciser sa somme.
- **I.2.3.** En déduire que la série $\sum_{k\geq 1}\frac{1}{k}\cos\left(\frac{2k\pi}{3}\right)$ converge et montrer que sa somme est égale à $\ln\left(\frac{1}{\sqrt{3}}\right)$.

I.3. Étude des séries
$$\sum_{k\geq 1} \frac{\cos(k\alpha)}{k}$$
 et $\sum_{k\geq 1} \frac{\sin(k\alpha)}{k}$

Pour
$$t \in]0,2\pi[$$
 et $n \in \mathbb{N}^*$, on note : $\varphi(t) = \frac{1}{e^{it}-1}$ et $S_n(t) = \sum_{k=1}^n e^{ikt}$.

On désigne par α un nombre réel fixé dans l'intervalle $]0,2\pi[$. Pour simplifier l'écriture des démonstrations, on supposera que $\pi \leq \alpha < 2\pi$.

- **I.3.1.** Montrer que $S_n(t) = \varphi(t) \left[e^{i(n+1)t} e^{it} \right]$.
- **I.3.2.** Montrer que la fonction φ est de classe C^1 sur le segment $[\pi, \alpha]$.
- **I.3.3.** Montrer que l'intégrale $\int_{\pi}^{\alpha} e^{i(n+1)t} \varphi(t) dt$ tend vers zéro lorsque l'entier n tend vers $+\infty$ (on pourra utiliser une intégration par parties).
- **I.3.4.** Expliciter $\int_{\pi}^{\alpha} S_n(t)dt$. Déduire de ce qui précède la convergence de la série $\sum_{k\geq 1} \frac{\mathrm{e}^{ik\alpha}}{k}$. Expliciter la somme $\sum_{k=1}^{+\infty} \frac{\mathrm{e}^{ik\alpha}}{k}$ en fonction de $\ln(2)$ et de $\int_{\pi}^{\alpha} \mathrm{e}^{it} \varphi(t)dt$.
- **I.3.5.** Exprimer $e^{it} \varphi(t)$ en fonction de $\frac{e^{\frac{it}{2}}}{\sin\left(\frac{t}{2}\right)}$ où t appartient à $[\pi, \alpha]$.
- **I.3.6.** En déduire la convergence des séries $\sum_{k\geq 1} \frac{\cos(k\alpha)}{k}$ et $\sum_{k\geq 1} \frac{\sin(k\alpha)}{k}$. Expliciter leur somme respective. Le résultat est-il conforme avec celui obtenu en I.2.3. ?

PARTIE II

Limite d'une intégrale

Dans cette partie, on désigne par f une fonction continue par morceaux sur l'intervalle $[0,+\infty[$ à valeurs réelles et telle que l'intégrale généralisée $\int_0^{+\infty} |f(t)| \, dt$ soit convergente. On désigne par g une fonction définie et continue sur l'intervalle $[0,+\infty[$ à valeurs complexes et (sous réserve d'existence) on note $\tilde{f}_g(x) = \int_0^{+\infty} f(t)g(xt)dt$ pour $x \in]0,+\infty[$.

II.1. Existence de $\tilde{f}_g(x)$

On suppose que la fonction g est bornée sur l'intervalle $[0,+\infty[$.

Justifier l'existence de $\tilde{f}_g(x)$ pour tout x réel strictement positif. Montrer que la fonction \tilde{f}_g est continue et bornée sur l'intervalle $]0,+\infty[$.

II.2. Limite de $\tilde{f}_g(x)$ lorsque $g(t) = e^{it}$

On suppose que la fonction f est de classe C^1 sur l'intervalle $[0,+\infty[$ et à valeur réelle.

Soit
$$\tilde{f}_g(x) = \int_0^{+\infty} f(t) e^{ixt} dt$$
.

II.2.1. Justifier l'affirmation:

Pour tout $\varepsilon > 0$, il existe un réel positif A tel que $\int_{A}^{+\infty} |f(t)| dt \le \varepsilon$.

- **II.2.2.** Le nombre réel A étant fixé, montrer que l'intégrale $\int_0^A f(t)e^{ixt} dt$ tend vers zéro lorsque le nombre réel x tend vers $+\infty$ (on pourra utiliser une intégration par parties).
- **II.2.3.** En déduire la limite de $\tilde{f}_g(x) = \int_0^{+\infty} f(t) e^{ixt} dt$ lorsque le nombre réel x tend vers $+\infty$.

Dans toute la suite du problème, on suppose que $g(t) = |\sin(t)|$ et on note simplement :

$$\tilde{f}(x) = \int_0^{+\infty} f(t) |\sin(xt)| dt .$$

II.3. Étude pour une fonction f particulière

On suppose (dans cet exemple) que f désigne la fonction E définie par $E(t) = e^{-t}$ pour $t \in [0, +\infty[$ et donc $\tilde{E}(x) = \int_0^{+\infty} e^{-t} \left| \sin(xt) \right| dt$ pour $x \in]0, +\infty[$.

II.3.1. Pour
$$\gamma \in \mathbb{R}$$
, calculer l'intégrale $\theta(\gamma) = \int_0^{\pi} e^{\gamma y} \sin(y) dy$.

II.3.2. Montrer que pour $x \in]0,+\infty[$:

$$\tilde{E}(x) = \frac{1}{x} \int_0^{+\infty} e^{-\frac{u}{x}} |\sin(u)| du.$$

- **II.3.3.** Exprimer pour tout $k \in \mathbb{N}$ et pour tout $x \in \mathbb{R}^*$, l'intégrale $\int_{k\pi}^{(k+1)\pi} e^{-\frac{u}{x}} |\sin(u)| du$ en fonction de $e^{-\frac{k\pi}{x}}$ et de $\theta(\gamma)$ pour un γ convenable.
- **II.3.4.** Justifier, pour $x \in]0,+\infty[$, la convergence de la série $\sum_{k\geq 0} e^{-\frac{k\pi}{x}}$;

préciser sa somme $\sum_{k=0}^{+\infty} e^{-\frac{k\pi}{x}}$.

II.3.5. Expliciter $\tilde{E}(x)$ pour $x \in]0,+\infty[$. Déterminer la limite de $\tilde{E}(x)$ lorsque x tend vers $+\infty$.

II.4. Étude générale

On désigne de nouveau par f une fonction quelconque continue par morceaux sur l'intervalle $[0,+\infty[$ telle que l'intégrale généralisée $\int_0^{+\infty} |f(t)| dt$ converge et on note :

$$\tilde{f}(x) = \int_0^{+\infty} f(t) |\sin(xt)| dt \text{ pour } x \in]0, +\infty[.$$

II.4.1. Lemme préliminaire

Pour tout t réel tel que la série $\sum_{k\geq 1} \frac{\cos(2kt)}{4k^2-1}$ converge, on pose $h(t) = \sum_{k=1}^{+\infty} \frac{\cos(2kt)}{4k^2-1}$. Montrer que la fonction h est définie et continue sur $\mathbb R$. Justifier l'égalité :

$$\forall t \in \mathbb{R}, \left| \sin(t) \right| = \frac{2}{\pi} - \frac{4}{\pi} h(t).$$

II.4.2. Limite de $\tilde{f}(x)$ dans le cas C^1

On suppose de plus que f est une fonction de classe C^1 sur l'intervalle $[0,+\infty[$. En utilisant les résultats obtenus en II.2 et II.4.1, déterminer la limite de $\tilde{f}(x)$ lorsque le réel x tend vers $+\infty$. Le résultat est-il conforme avec celui obtenu pour la fonction E?

II.4.3. Cas d'une fonction continue par morceaux

II.4.3.1. Une limite

Étant donnés deux nombres réels β et δ tels que $0 \le \beta < \delta$, on considère l'intégrale $F(x) = \int_{\beta}^{\delta} \left| \sin(xt) \right| dt \text{ pour } x \in \left] 0, +\infty \right[\text{. Montrer que } F(x) = \frac{1}{x} \int_{\beta x}^{\delta x} \left| \sin(u) \right| du \text{.}$

On pose p la partie entière de $\frac{\beta x}{\pi}$ et q la partie entière de $\frac{\delta x}{\pi}$. Pour $x > \frac{\pi}{\delta - \beta}$, donner un encadrement de F(x) en fonction de p, q et x.

En déduire que F(x) tend vers $\frac{2}{\pi}(\delta - \beta)$ lorsque le nombre réel x tend vers $+\infty$.

II.4.3.2. Limite de $\tilde{f}(x)$ dans le cas d'une fonction continue par morceaux

Si J est un intervalle de $[0,+\infty[$ et si f est une fonction continue par morceaux sur J à valeurs réelles et telle que l'intégrale $\int_{T} |f(t)| dt$ existe, on note toujours :

$$\tilde{f}(x) = \int_{t} f(t) |\sin(xt)| dt.$$

Quelle est la limite de $\tilde{f}(x)$ lorsque le réel x tend vers $+\infty$:

- lorsque J est un segment de $[0,+\infty[$ et f une fonction en escalier ?
- lorsque J est un segment de $[0,+\infty[$ et f une fonction continue par morceaux ?
- lorsque $J = [0, +\infty[$ et f est une fonction continue par morceaux ?

Fin de l'énoncé