SESSION 2011 PCM2006

EPREUVE SPECIFIQUE - FILIERE PC

MATHEMATIQUES 2

Durée: 4 heures

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont interdites

Les parties II et III sont indépendantes

PARTIE I

Soit $\sum u_n$ la série de fonctions d'une variable réelle de terme général u_n défini pour tout $n\in N^*$ par : pour tout $x\in\mathbb{R}$, $u_n(x)=\frac{2x}{x^2+n^2\pi^2}$.

I.1.

I.1.1. Montrer que $\sum u_n$ converge simplement sur $\mathbb R$ tout entier.

On note $U=\sum_{n=1}^{+\infty}u_n\,$ la somme de la série de fonctions $\,\sum u_n\,$.

I.1.2. Montrer que, pour tout a>0 , $\sum u_{\scriptscriptstyle n}$ converge normalement sur [-a,a].

La série $\sum u_n$ converge-t-elle normalement sur $\mathbb R$?

I.1.3. Montrer que U est continue sur \mathbb{R} .

- I.2.
 - **I.2.1.** Soit $n \in \mathbb{N}^*$. Déterminer la primitive qui s'annule en 0 de la fonction u_n .
 - **I.2.2**. Soit $(v_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définie par :

$$\text{pour tout } n \in \mathbb{N}^* \text{, pour tout } x \in \mathbb{R} \text{ , } v_n(x) = \ln \biggl(1 + \frac{x^2}{n^2 \pi^2} \biggr).$$

Montrer que $\sum v_n$ converge simplement sur \mathbb{R} .

I.2.3. On note $V = \sum_{n=1}^{+\infty} v_n$ la somme de la série de fonctions $\sum v_n$.

Montrer que V est la primitive qui s'annule en 0 de la fonction U.

I.3. On considère la suite $(p_n)_{n\in\mathbb{N}}$ de fonctions polynômes sur \mathbb{R} définie par :

pour tout
$$x \in \mathbb{R}$$
, $p_0(x) = x$;

$$\text{pour tout } n \in \mathbb{N}^* \text{ et pour tout } x \in \mathbb{R} \,, \quad p_{\scriptscriptstyle n}(x) = x \prod_{k=1}^{k=n} \biggl(1 + \frac{x^2}{k^2 \pi^2} \biggr).$$

Montrer que la suite $\left(p_n\right)_{n\in\mathbb{N}}$ converge simplement sur \mathbb{R} , lorsque n tend vers $+\infty$, vers une fonction p que l'on exprimera à l'aide de V puis de U.

Pour tout $x \in \mathbb{R}$, la limite donnant p(x) sera alors notée : $p(x) = x \prod_{k=1}^{+\infty} \left(1 + \frac{x^2}{k^2 \pi^2}\right)$.

PARTIE II

Pour tout $x \in \mathbb{R}$, on note g_x la fonction d'une variable réelle, périodique de période 2π , telle que, pour tout $t \in]-\pi,\pi]$, on ait : $g_x(t)=\operatorname{ch}\left(\frac{xt}{\pi}\right)$.

- II.1.
 - **II.1.1**. Préciser pourquoi g_x est égale en tout point $t \in \mathbb{R}$ à la somme de sa série de Fourier :

$$\frac{1}{2}a_0(x) + \sum_{n=1}^{+\infty} (a_n(x)\cos(nt) + b_n(x)\sin(nt)).$$

- **II.1.2.** Pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}$, calculer $b_n(x)$.
- **II.1.3**. Pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}$, calculer $a_n(x)$. On distinguera les cas x = 0 et $x \neq 0$.
- II.2.
 - **II.2.1**. En donnant à t une valeur particulière dans la série de Fourier de g_x , montrer que,

pour tout
$$x \in \mathbb{R}^*$$
, $U(x) = \frac{\operatorname{ch}(x)}{\operatorname{sh}(x)} - \frac{1}{x}$.

- **II.2.2.** A partir de $V(x) = \int_0^x U(t)dt$ et du résultat de **II.2.1**, donner à l'aide des fonctions usuelles une expression de la fonction V définie à la question **I.2.3**.
- **II.2.3**. En déduire que, pour tout $x \in \mathbb{R}$, on a :

$$\operatorname{sh}(x) = p(x) = x \prod_{k=1}^{+\infty} \left[1 + \frac{x^2}{k^2 \pi^2} \right].$$

PARTIE III

Soit h la fonction définie sur $\mathbb{R} \times]0,+\infty[$ par :

$$\text{pour tout } (x,t) \in \mathbb{R} \times \left]0,+\infty\right[, \ \ h(x,t) = \frac{\sin(tx)}{\exp(\pi t) - 1}.$$

III.1.

- **III.1.1.** Soit $x \in \mathbb{R}$. Montrer que la fonction $t \mapsto h(x,t)$ admet, quand t tend vers 0 par valeurs positives, une limite finie que l'on déterminera.
- **III.1.2**. Montrer que, pour tout $x \in \mathbb{R}$, la fonction $t \mapsto h(x,t)$ est intégrable sur $]0,+\infty[$.

III.2.

- III.2.1. Montrer que h possède des dérivées partielles par rapport à x en tout point de $\mathbb{R} \times]0,+\infty[$ et à tout ordre. Calculer, pour tout $(x,t) \in \mathbb{R} \times]0,+\infty[$ et tout $n \in \mathbb{N}^*, \frac{\partial^n h}{\partial x^n}(x,t)$. On distinguera les cas n pair et n impair.
- **III.2.2.** Montrer que, pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}$, la fonction $t \mapsto \frac{\partial^n h}{\partial x^n}(x,t)$ est continue et intégrable sur $]0,+\infty[$.
- III.3. Soit f la fonction définie sur \mathbb{R} par : $f(x) = \int_0^{+\infty} \frac{\sin(tx)}{\exp(\pi t) 1} dt$ pour tout $x \in \mathbb{R}$.

Montrer que f est de classe \mathcal{C}^∞ sur \mathbb{R} et que, pour tout $x\in\mathbb{R}$ et tout $m\in\mathbb{N}$,

$$\text{on a}: \, f^{(2m)}(x) = \int_0^{+\infty} \frac{(-1)^m t^{2m} \sin(tx)}{\exp(\pi t) - 1} dt \ \text{ et } \, f^{(2m+1)}(x) = \int_0^{+\infty} \frac{(-1)^m t^{2m+1} \cos(tx)}{\exp(\pi t) - 1} dt \, .$$

III.4.

- **III.4.1**. Montrer que, pour tout t > 0, on a : $\frac{1}{\exp(\pi t) 1} = \sum_{n=1}^{+\infty} \exp(-n\pi t).$
- III.4.2. Montrer que, pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}$, la fonction $t \mapsto \exp(-n\pi t)\sin(tx)$ est intégrable sur $[0, +\infty[$ et exprimer $\int_0^{+\infty} \exp(-n\pi t)\sin(tx)dt$ à l'aide de $u_n(x)$.
- **III.4.3**. Pour tout $n \in \mathbb{N}^*$, pour tout $x \in \mathbb{R}$, pour tout $t \in [0, +\infty[$,

on pose : $h_n(x,t) = \sum_{k=1}^{k=n} \exp(-k\pi t)\sin(tx)$. Montrer que, pour tout $x \in \mathbb{R}$ et tout $t \in]0,+\infty[$,

$$h_n(x,t) = (1 - \exp(-n\pi t)) \frac{\sin(tx)}{e^{\pi t} - 1}.$$

Puis, montrer que : $f(x) = \lim_{n \to +\infty} \int_0^{+\infty} h_n(x,t) dt \ \ {\rm pour \ tout} \ \ x \in \mathbb{R}$.

En déduire une expression simple de la fonction $\,f\,$ à l'aide de la fonction $\,U\,$.

Fin de l'énoncé