SESSION 2011 PCM1002

EPREUVE SPECIFIQUE - FILIERE PC

MATHEMATIQUES 1

Durée: 4 heures

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont interdites

Les parties I, II et III sont indépendantes. Notations et définitions

Soit $\mathcal{P} = \mathbb{R}^2$ le plan muni du produit scalaire canonique et du repère orthonormé $\mathcal{R} = (O, \mathbf{i}, \mathbf{j})$ avec O = (0,0), $\mathbf{i} = (1,0)$ et $\mathbf{j} = (0,1)$. La norme associée au produit scalaire canonique sera notée $\|\cdot\|_2$ si bien que pour tout $(x,y) \in \mathbb{R}^2$, $\|x \cdot \mathbf{i} + y \cdot \mathbf{j}\|_2 = \sqrt{x^2 + y^2}$.

Pour a et b deux réels donnés, on définit $\mathcal{D}_{a,b}$ la droite d'équation dans $\mathcal{R}: y = ax + b$.

Si $M \in \mathcal{P}$ a pour coordonnées (x, y) dans \mathcal{R} , on note $p_{a,b}(M)$ l'unique point de $\mathcal{D}_{a,b}$ ayant, dans \mathcal{R} , la même abscisse x que M.

On définit aussi $\mathcal{D}'_{a,b}$ la droite d'équation dans $\mathcal{R}: x=ay+b,$ et $p'_{a,b}(M)$ l'unique point de $\mathcal{D}'_{a,b}$ ayant, dans \mathcal{R} , la même ordonnée y que M.

PARTIE I : DROITES DES MOINDRES CARRÉS DANS UN CAS PARTICULIER Soient A, B et C les trois points de P dont les coordonnées dans R sont respectivement : (0,0), (0,1) et $(\alpha,\frac{1}{2})$ où α désigne un réel non nul.

On définit deux applications f_0 et f_1 de \mathbb{R}^2 dans \mathbb{R} en posant : pour tout $(a,b) \in \mathbb{R}^2$,

$$f_0(a,b) = \left\| \overline{p_{a,b}(A)A} \right\|_2^2 + \left\| \overline{p_{a,b}(B)B} \right\|_2^2 + \left\| \overline{p_{a,b}(C)C} \right\|_2^2,$$

$$f_1(a,b) = \left\| \overrightarrow{p'_{a,b}(A)A} \right\|_2^2 + \left\| \overrightarrow{p'_{a,b}(B)B} \right\|_2^2 + \left\| \overrightarrow{p'_{a,b}(C)C} \right\|_2^2.$$

1/6

- **I.1.** Montrer que A, B et C ne sont pas alignés.
- I.2. **I.2.a.** Montrer que $f_0(a,b) = b^2 + (b-1)^2 + \left(a\alpha + b - \frac{1}{2}\right)^2$.

I.2.b. Vérifier que
$$f_0(a,b) = \left(a\alpha + b - \frac{1}{2}\right)^2 + 2\left(b - \frac{1}{2}\right)^2 + \frac{1}{2}$$
.

- **I.2.c.** En déduire que la fonction f_0 admet un minimum sur \mathbb{R}^2 et que ce minimum est atteint en un unique couple de réels $(a,b)=(0,\frac{1}{2})$ correspondant à la droite, notée \mathcal{D}_0 , d'équation dans $\mathcal{R}: y = \frac{1}{2}$.
- I.3. **I.3.a.** Déterminer l'expression explicite de $f_1(a,b)$ en fonction de a,b et α .

I.3.b. Montrer que
$$f_1(a,b) = 3\left(\frac{a}{2} + b - \frac{\alpha}{3}\right)^2 + \frac{1}{2}a^2 + \frac{2}{3}\alpha^2$$
.

- **I.3.c.** En déduire que la fonction f_1 admet un minimum sur \mathbb{R}^2 et que ce minimum est atteint en un unique couple de réels, noté (a_1, b_1) , à déterminer. On note alors \mathcal{D}_1 la droite d'équation dans $\mathcal{R}: x = a_1y + b_1$.
- **I.4.** Montrer que \mathcal{D}_0 et \mathcal{D}_1 sont orthogonales et se coupent en un unique point $M \in \mathcal{P}$ qui est l'isobarycentre de (A, B, C).

PARTIE II: RÉSULTATS SUR UN ESPACE PRÉHILBERTIEN RÉEL

Soit E un espace préhilbertien réel non réduit à $\{0\}$ et F un sous-espace vectoriel de dimension finie de E. On note $(\cdot|\cdot)$ le produit scalaire sur E et $\|\cdot\|$ la norme associée à ce produit scalaire.

II.1. Donner la définition de F^{\perp} . Énoncer (sans démonstration) une propriété vérifiée par Fet F^{\perp} valable en général. Dans le cas où E est de dimension finie, que peut-on dire de plus?

Pour $\mathbf{x} \in E$, on note $p_F(\mathbf{x})$ la projection orthogonale de \mathbf{x} sur F.

II.2. Démontrer que $\inf_{\mathbf{z} \in F} \|\mathbf{x} - \mathbf{z}\|$ est bien défini et que cette borne inférieure est atteinte en un unique élément \mathbf{z} de F défini par $\mathbf{z} = p_F(\mathbf{x})$.

Cette borne inférieure est notée $d(\mathbf{x}, F)$. On a donc $d(\mathbf{x}, F) = ||\mathbf{x} - p_F(\mathbf{x})||$. On dit qu'une application $(\mathbf{x}, \mathbf{y}) \mapsto (\mathbf{x}|\mathbf{y})_F$ de E^2 dans \mathbb{R} est un **produit subordonné à** Fsi elle vérifie les 4 propriétés suivantes :

- i) $\forall \mathbf{x} \in E$, l'application $\mathbf{y} \mapsto (\mathbf{x}|\mathbf{y})_F$ est une forme linéaire sur E;
- ii) $\forall (\mathbf{x}, \mathbf{y}) \in E^2$, $(\mathbf{x}|\mathbf{y})_F = (\mathbf{y}|\mathbf{x})_F$; iii) $\forall \mathbf{x} \in E, \forall \mathbf{y} \in F,$ $(\mathbf{x}|\mathbf{y})_F = 0$; iv) $\forall \mathbf{x} \in F^{\perp}, \forall \mathbf{y} \in F^{\perp},$ $(\mathbf{x}|\mathbf{y})_F = (\mathbf{x}|\mathbf{y}).$

- II.3.a. Montrer que si $(\mathbf{x}, \mathbf{y}) \mapsto (\mathbf{x}|\mathbf{y})_F$ est un produit subordonné à F, alors :
 - $\forall (\mathbf{x}, \mathbf{y}) \in E^2$, $(\mathbf{x}|\mathbf{y})_F = (\mathbf{x} p_F(\mathbf{x})|\mathbf{y} p_F(\mathbf{y}))$;
 - $\forall \mathbf{x} \in E$, $(\mathbf{x}|\mathbf{x})_F = (d(\mathbf{x},F))^2$; $\forall \mathbf{x} \in E$, $(\mathbf{x}|\mathbf{x})_F \geqslant 0$; $\forall \mathbf{x} \in E$ $(\mathbf{x}|\mathbf{x})_F = 0$

 - $\forall \mathbf{x} \in E$, $(\mathbf{x}|\mathbf{x})_F = 0$
 - **II.3.b.** Vérifier qu'il existe un unique produit subordonné à F.

On note alors $(\cdot|\cdot)_F$ ce produit subordonné à F et pour $\mathbf{x} \in E$, on pose $\|\mathbf{x}\|_F = \sqrt{(\mathbf{x}|\mathbf{x})_F}$.

II.4. Montrer que pour tout $(\mathbf{x}, \mathbf{y}) \in E^2$, $|(\mathbf{x}|\mathbf{y})_F| \leq ||\mathbf{x}||_F \cdot ||\mathbf{y}||_F$; à quelle condition sur \mathbf{x} et \mathbf{y} peut-on dire que : $|(\mathbf{x}|\mathbf{y})_F| = ||\mathbf{x}||_F \cdot ||\mathbf{y}||_F$?

II.5.

II.5.a. Montrer l'existence d'un élément de E, noté \mathbf{u} , tel que $\|\mathbf{u}\| = 1$.

On note alors $D = \text{Vect}(\mathbf{u})$ la droite vectorielle engendrée par \mathbf{u} et p_D la projection orthogonale sur D.

II.5.b. Vérifier que pour tout $\mathbf{x} \in E$, $p_D(\mathbf{x}) = (\mathbf{x}|\mathbf{u})\mathbf{u}$.

Pour tout élément $\mathbf{x} \in E$, on pose $m_{\mathbf{x}} = (\mathbf{x}|\mathbf{u}), \ \sigma_{\mathbf{x}} = \|\mathbf{x}\|_{D}$.

Pour tout couple $(\mathbf{x}, \mathbf{y}) \in E^2$, on pose $\text{cov}(\mathbf{x}, \mathbf{y}) = (\mathbf{x}|\mathbf{y})_D$.

II.5.c. Montrer que $\sigma_{\mathbf{x}} = \|\mathbf{x} - m_{\mathbf{x}}\mathbf{u}\|$ et que $\operatorname{cov}(\mathbf{x}, \mathbf{y}) = (\mathbf{x}|\mathbf{y}) - m_{\mathbf{x}}m_{\mathbf{y}}$.

On suppose dans la suite de cette partie que \mathbf{x} et \mathbf{y} sont deux éléments de \mathbf{E} tels que la famille $(\mathbf{u}, \mathbf{x}, \mathbf{y})$ soit libre.

II.6. Montrer que $\sigma_{\mathbf{x}}$ et $\sigma_{\mathbf{y}}$ sont deux réels strictement positifs.

On pose alors
$$\mathbf{x}^* = \frac{\mathbf{x} - m_{\mathbf{x}} \mathbf{u}}{\sigma_{\mathbf{x}}}, \ \mathbf{y}^* = \frac{\mathbf{y} - m_{\mathbf{y}} \mathbf{u}}{\sigma_{\mathbf{y}}} \text{ et } \rho = \frac{\text{cov}(\mathbf{x}, \mathbf{y})}{\sigma_{\mathbf{x}} \sigma_{\mathbf{y}}}.$$

II.7.

II.7.a. Montrer que $m_{\mathbf{x}^*} = 0$, que $\sigma_{\mathbf{x}^*} = 1$ et que $\rho \in]-1,1[$.

II.7.b. Vérifier alors que $(\mathbf{u}, \mathbf{x}^*)$ est une base orthonormale de $F = \text{Vect}(\mathbf{u}, \mathbf{x})$.

II.7.c. Montrer que $\inf_{(a,b)\in\mathbb{R}^2} \|\mathbf{y} - a\mathbf{x} - b\mathbf{u}\|$ est bien défini et vaut $d(\mathbf{y}, F)$.

II.7.d. Établir que
$$\inf_{(a,b)\in\mathbb{R}^2} \|\mathbf{y} - a\mathbf{x} - b\mathbf{u}\| = \|\mathbf{y} - m_{\mathbf{y}}\mathbf{u} - (\mathbf{y}|\mathbf{x}^*)\mathbf{x}^*\|.$$

II.7.e. Vérifier que
$$\inf_{(a,b)\in\mathbb{R}^2} \|\mathbf{y} - a\mathbf{x} - b\mathbf{u}\| = \sigma_{\mathbf{y}} \|\mathbf{y}^* - \rho\mathbf{x}^*\|.$$

II.7.f. Déterminer, en fonction de x, y et u, l'unique couple de réels (a_0, b_0) tel que :

$$\inf_{(a,b)\in\mathbb{R}^2} \|\mathbf{y} - a\mathbf{x} - b\mathbf{u}\| = \|\mathbf{y} - a_0\mathbf{x} - b_0\mathbf{u}\|.$$

Dans le plan \mathcal{P} , on définit \mathcal{D}_0 comme étant la droite dont l'équation dans \mathcal{R} est : $y = a_0 x + b_0$.

II.8. Montrer que
$$\mathcal{D}_0$$
 a pour équation dans \mathcal{R} : $\frac{y - m_y}{\sigma_y} = \rho \cdot \frac{x - m_x}{\sigma_x}$.

II.9. Montrer de même qu'il existe un unique couple de réels (a_1, b_1) tel que :

$$\inf_{(a,b)\in\mathbb{R}^2} \|\mathbf{x} - a\mathbf{y} - b\mathbf{u}\| = \|\mathbf{x} - a_1\mathbf{y} - b_1\mathbf{u}\|.$$

Dans le plan \mathcal{P} , on définit \mathcal{D}_1 comme étant la droite dont l'équation dans \mathcal{R} est : $x = a_1 y + b_1$.

II.10. Montrer que \mathcal{D}_1 a pour équation dans $\mathcal{R}: \frac{x-m_{\mathbf{x}}}{\sigma_{\mathbf{x}}} = \rho \cdot \frac{y-m_{\mathbf{y}}}{\sigma_{\mathbf{y}}}$ avec le même réel ρ défini précédemment.

- **II.11.** Vérifier que \mathcal{D}_0 et \mathcal{D}_1 se coupent en un unique point $M \in \mathcal{P}$ de coordonnées dans \mathcal{R} : $(m_{\mathbf{x}}, m_{\mathbf{y}})$.
- II.12. Montrer que les droites \mathcal{D}_0 et \mathcal{D}_1 sont orthogonales si et seulement si $(\mathbf{x}|\mathbf{y}) = m_{\mathbf{x}}m_{\mathbf{y}}$.

PARTIE III : BASE ADAPTÉE À UN PRODUIT SCALAIRE DANS UN ESPACE EUCLIDIEN

Soit E_n un espace euclidien de dimension n avec $n \ge 1$.

On note $(\cdot|\cdot)$ le produit scalaire sur E_n et $\|\cdot\|$ la norme associée à ce produit scalaire.

Soit $\mathcal{B} = (\mathbf{e}_1, \dots, \mathbf{e}_n)$ une base de E_n . Pour tout élément $\mathbf{z} \in E_n$, on notera $M_{\mathcal{B}}(\mathbf{z})$ la matrice de \mathbf{z} dans la base \mathcal{B} , et on posera $Z = M_{\mathcal{B}}(\mathbf{z})$. Ainsi Z est la matrice-colonne à n lignes donnée

par la relation
$$Z = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R}) \text{ si } \mathbf{z} = \sum_{i=1}^n z_i \mathbf{e}_i.$$

III.1. Vérifier que pour tout $(\mathbf{x}, \mathbf{y}) \in E_n^2$, $(\mathbf{x}|\mathbf{y}) = {}^t X S Y$ si $X = \mathrm{M}_{\mathcal{B}}(\mathbf{x})$, $Y = \mathrm{M}_{\mathcal{B}}(\mathbf{y})$ et $S = \left((\mathbf{e}_i|\mathbf{e}_j)\right)_{(i,j)\in\{1,\ldots,n\}^2}$.

On dit alors que S est **associée** à \mathcal{B} .

III.2.

- **III.2.a.** Vérifier que si S est associée à \mathcal{B} , alors S est une matrice carrée symétrique réelle d'ordre n et que le spectre de S dans \mathbb{C} est inclus dans \mathbb{R}_+^* .
- **III.2.b.** À quelle condition sur \mathcal{B} la matrice S associée à \mathcal{B} est-elle diagonale?
- **III.3.** On considère deux matrices A et B carrées d'ordre n telles que pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$ et $Y \in \mathcal{M}_{n,1}(\mathbb{R})$, ${}^tXAY = {}^tXBY$. Montrer que A = B.

Notons $\mathcal{B}' = (\mathbf{e}'_1, \dots, \mathbf{e}'_n)$ une base de E_n et P la matrice de passage de \mathcal{B} à \mathcal{B}' .

III.4.

III.4.a. Pour $\mathbf{x} \in E_n$, on note $X = M_{\mathcal{B}}(\mathbf{x})$ et $X' = M_{\mathcal{B}'}(\mathbf{x})$. Donner la relation entre X, X' et P.

III.4.b. On note $S' = \left((\mathbf{e}'_i | \mathbf{e}'_j) \right)_{(i,j) \in \{1,\dots,n\}^2}$. Pour $(\mathbf{x}, \mathbf{y}) \in E_n^2$, $X' = \mathbf{M}_{\mathcal{B}'}(\mathbf{x})$ et $Y' = \mathbf{M}_{\mathcal{B}'}(\mathbf{y})$, donner l'expression de $(\mathbf{x}|\mathbf{y})$ en fonction de X', Y' et S'. En déduire que $S' = {}^t PSP$.

III.4.c. Montrer qu'il existe une base \mathcal{B}' de E_n telle que, pour tout $(\mathbf{x}, \mathbf{y}) \in E_n^2$,

$$(\mathbf{x}|\mathbf{y}) = \sum_{i=1}^{n} x_i' y_i'$$
 si $\mathbf{x} = \sum_{i=1}^{n} x_i' \mathbf{e}_i'$ et $\mathbf{y} = \sum_{i=1}^{n} y_i' \mathbf{e}_i'$.

- **III.4.d.** À quelle condition sur \mathcal{B} la matrice de passage P de \mathcal{B} à la base précédente \mathcal{B}' est-elle une matrice orthogonale?
- III.5. Étant donné une matrice $M_1 \in \mathcal{M}_n(\mathbb{R})$ diagonale avec des réels (d_1, \ldots, d_n) strictement positifs sur la diagonale, M_1 est-elle la matrice associée à une base de E_n ?

III.6. Soit $M_2 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $\mathcal{B} = (\mathbf{e}_1, \mathbf{e}_2)$ une base orthonormale de E_2 et f_2 l'endomorphisme de E_2 dont la matrice dans \mathcal{B} est M_2 .

III.6.a. Déterminer le spectre de f_2 et une base orthonormale de chaque sous-espace propre de f_2 .

III.6.b. M_2 est-elle la matrice associée à une base de E_2 ?

III.7. Soit
$$M_3 = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix}$$
 et $\mathcal{B} = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ une base orthonormale de E_3 .

On note f_3 l'endomorphisme de E_3 dont la matrice dans \mathcal{B} est M_3 .

III.7.a. Déterminer le spectre de f_3 et une base orthonormale de chaque sous-espace propre de f_3 .

III.7.b. M_3 est-elle la matrice associée à une base de E_3 ?

III.8.
$$M_4 = \begin{pmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \\ 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \end{pmatrix}$$
 est-elle la matrice associée à une base de E_4 ?

On dit qu'une famille $\mathcal{B} = (\mathbf{e}_1, \dots, \mathbf{e}_n)$ d'éléments de E_n est **adaptée** si les conditions suivantes sont remplies :

• pour tout
$$(i, j) \in \{1, ..., n\}^2$$
, $(\mathbf{e}_i | \mathbf{e}_j) = 0$ si $i \neq j$;

• pour tout
$$i \in \{1, \dots, n\}$$
, $(\mathbf{e}_i | \mathbf{e}_i) = \frac{1}{n}$.

III.9.

III.9.a. Montrer qu'une famille adaptée est une base de E_n .

III.9.b. Montrer l'existence d'une base adaptée.

III.9.c. E_n admet-il une unique base adaptée?

III.9.d. On suppose que \mathcal{B} est une base adaptée. Pour $(\mathbf{x}, \mathbf{y}) \in E_n^2$, déterminer l'expression de $(\mathbf{x}|\mathbf{y})$ en fonction des coordonnées de \mathbf{x} et de \mathbf{y} dans la base \mathcal{B} .

III.9.e. Calculer alors la norme du vecteur $\sum_{i=1}^{n} \mathbf{e}_{i}$.

PARTIE IV: DROITES DES MOINDRES CARRÉS DANS LE CAS GÉNÉRAL

Soit n un entier supérieur ou égal à 3.

On considère A_1, \ldots, A_n , n points distincts du plan \mathcal{P} qui ne sont pas alignés.

On note $(x_1, y_1), \ldots, (x_n, y_n)$ leurs coordonnées respectives dans \mathcal{R} .

On définit deux applications f_0 et f_1 de \mathbb{R}^2 dans \mathbb{R} en posant : pour tout $(a,b) \in \mathbb{R}^2$,

$$f_0(a,b) = \sum_{i=1}^n \left\| \overline{p_{a,b}(A_i)A_i} \right\|_2^2$$
 et $f_1(a,b) = \sum_{i=1}^n \left\| \overline{p'_{a,b}(A_i)A_i} \right\|_2^2$.

IV.1. Donner un exemple d'espace préhilbertien réel de dimension infinie, puis un exemple d'espace euclidien de dimension n (dans les deux cas, on donnera l'expression du produit scalaire).

5/6

On considère dans toute la suite du problème un espace euclidien E_n de dimension n, dont le produit scalaire et la norme associée sont notés respectivement $(\cdot|\cdot)$ et $||\cdot||$.

IV.2. Justifier l'existence d'une base $\mathcal{B} = (\mathbf{e}_1, \dots, \mathbf{e}_n)$ de E_n telle que :

$$\forall (\mathbf{z}, \mathbf{t}) \in E_n^2, \quad (\mathbf{z}|\mathbf{t}) = \frac{1}{n} \sum_{i=1}^n z_i t_i \quad \text{si} \quad \mathbf{z} = \sum_{i=1}^n z_i \mathbf{e}_i \quad \text{et} \quad \mathbf{t} = \sum_{i=1}^n t_i \mathbf{e}_i.$$

On pose $\mathbf{u} = \sum_{i=1}^{n} \mathbf{e}_i$, si bien que $\|\mathbf{u}\| = 1$.

On définit alors, à partir des points A_1, \ldots, A_n , deux éléments \mathbf{x} et \mathbf{y} dans E_n en posant : $\mathbf{x} = \sum_{i=1}^n x_i \mathbf{e}_i$ et $\mathbf{y} = \sum_{i=1}^n y_i \mathbf{e}_i$.

IV.3. Montrer que $(\mathbf{u}, \mathbf{x}, \mathbf{y})$ est une famille libre de E_n .

IV.4. Montrer que pour tout $(a, b) \in \mathbb{R}^2$, $f_0(a, b) = n \|\mathbf{y} - a\mathbf{x} - b\mathbf{u}\|^2$ et $f_1(a, b) = n \|\mathbf{x} - a\mathbf{y} - b\mathbf{u}\|^2$.

IV.5.

IV.5.a. En déduire que f_0 admet un minimum sur \mathbb{R}^2 qui est atteint en un unique couple de réels, noté (a_0, b_0) , et qu'il en est de même de f_1 avec un unique couple de réels noté (a_1, b_1) .

Dans le plan \mathcal{P} , on définit alors les droites \mathcal{D}_0 et \mathcal{D}_1 d'équation dans $\mathcal{R}: y = a_0x + b_0$ et $x = a_1y + b_1$. On les appelle les droites des moindres carrés associées à A_1, \ldots, A_n .

IV.5.b. Montrer que les droites \mathcal{D}_0 et \mathcal{D}_1 se coupent en un unique point $M \in \mathcal{P}$ qui est l'isobarycentre de (A_1, \ldots, A_n) .

IV.5.c. À quelle condition sur les $x_1, \ldots, x_n, y_1, \ldots, y_n$, les droites \mathcal{D}_0 et \mathcal{D}_1 sont-elles orthogonales? Donner dans ce cas les équations dans \mathcal{R} de \mathcal{D}_0 et \mathcal{D}_1 .

IV.5.d. Donner un exemple de quatre points distincts et non alignés A_1, \ldots, A_4 de \mathcal{P} tels que les droites des moindres carrés \mathcal{D}_0 et \mathcal{D}_1 associées à A_1, \ldots, A_4 soient orthogonales et donner dans ce cas les équations dans \mathcal{R} de \mathcal{D}_0 et \mathcal{D}_1 .