A 2010 MATH. II MP

ÉCOLE DES PONTS PARISTECH, SUPAÉRO (ISAE), ENSTA PARISTECH, TÉLÉCOM PARISTECH, MINES PARISTECH, MINES DE SAINT-ÉTIENNE, MINES DE NANCY, TÉLÉCOM BRETAGNE, ENSAE PARISTECH (FILIÈRE MP), ÉCOLE POLYTECHNIQUE (FILIÈRE TSI).

CONCOURS 2010

SECONDE ÉPREUVE DE MATHÉMATIQUES

Filière MP

(Durée de l'épreuve : 4 heures) L'usage d'ordinateur ou de calculette est interdit.

Sujet mis à la disposition des concours : CYCLE INTERNATIONAL, ENSTIM, TELECOM INT, TPE-EIVP.

Les candidats sont priés de mentionner de façon apparente sur la première page de la copie :

MATHÉMATIQUES II - MP.

L'énoncé de cette épreuve comporte 4 pages de texte.

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Soit n un entier ≥ 2 . On note $\mathcal{M}_n(\mathbb{R})$ l'espace vectoriel des matrices réelles à n lignes et n colonnes. On appelle matrice binaire de taille n une matrice $A \in \mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont égaux à 0 ou à 1. L'élément d'une telle matrice situé sur la i-ième ligne et la j-ième colonne est dit en position (i, j), où $1 \leq i \leq n$ et $1 \leq j \leq n$.

On désigne par \mathcal{U}_n l'ensemble des matrices binaires de taille n comportant exactement deux 1 dans chaque ligne et exactement deux 1 dans chaque colonne. L'exemple suivant :

$$\begin{pmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{pmatrix}$$

est une matrice de \mathcal{U}_4 .

On note u_n le cardinal de \mathcal{U}_n , et on pose par convention $u_0 = 1$ et $u_1 = 0$.

La partie D est indépendante des parties B et C.

A. Questions préliminaires

1) Exhiber toutes les matrices de \mathcal{U}_n pour n=2 et 3, et déterminer les valeurs correspondantes de u_n . (Dans le cas n=3, on pourra raisonner sur la position des éléments nuls dans chacune de ces matrices.)

Soit X_0 le vecteur de \mathbb{R}^n dont tous les coefficients sont égaux à 1 et J la matrice de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont égaux à 1.

2) Si $A \in \mathcal{U}_n$, montrer que X_0 est un vecteur propre de A. Quelle est la valeur propre associée?

Soit \mathcal{H}_n l'ensemble des éléments de \mathcal{U}_n comportant un 1 en position (1,1). On note h_n le cardinal de \mathcal{H}_n .

3) Calculer la somme de toutes les matrices de \mathcal{U}_n en fonction de h_n et de J.

B. Étude du cardinal de \mathcal{U}_n

4) Établir la relation $u_n = \frac{n}{2}h_n$ pour tout $n \ge 2$. (On pourra s'aider des deux questions précédentes.)

Soit \mathcal{K}_n l'ensemble des éléments de \mathcal{H}_n comportant un 1 en position (1,2) et un 1 en position (2,1). On note k_n le cardinal de \mathcal{K}_n .

- 5) Pour tout $n \ge 2$, établir une relation donnant h_n en fonction de k_n et de $(n-1)^2$.
- **6)** En examinant les possibilités pour le coefficient situé en position (2,2), démontrer la relation $k_n = u_{n-2} + h_{n-1}$ pour tout $n \ge 4$.

On pose $w_n = \frac{u_n}{(n!)^2}$ pour tout $n \in \mathbb{N}$.

- 7) Déduire de ce qui précède une relation de récurrence pour la suite $(u_n)_{n \in \mathbb{N}}$, puis pour la suite $(w_n)_{n \in \mathbb{N}}$.
- 8) Prouver que $w_n \in [0,1]$ pour tout $n \in \mathbb{N}$, et que la série de terme général w_n diverge. Que peut-on en déduire pour le rayon de convergence de la série entière $\sum w_n x^n$?

On pose $W(x) = \sum_{n=0}^{\infty} w_n x^n$ pour tout $x \in]-1,1[$.

9) Donner une équation différentielle vérifiée par W et en déduire une expression de W(x) en fonction de x.

C. Équivalent d'une suite de coefficients d'un développement en série entière

Cette partie permet d'obtenir un équivalent de u_n pour $n \to +\infty$. Soit α un réel et β un réel > 0. On considère la fonction ϕ définie pour $x \in]-1,1[$ par la formule :

$$\phi(x) = \frac{e^{\alpha x}}{(1-x)^{\beta}}.$$

On note $\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} \, \mathrm{d}x$ la fonction Gamma définie pour tout réel t > 0; on rappelle que $\Gamma(\frac{1}{2}) = \sqrt{\pi}$ et que $\Gamma(t+1) = t \Gamma(t)$ pour tout t > 0.

- **10)** Montrer que $\phi(x)$ est la somme d'une série entière $\sum \phi_n x^n$ pour tout $x \in]-1,1[$.
- 11) Montrer que si $x \in]-1,1[$, on peut écrire :

$$\frac{1}{(1-x)^{\beta}} = \sum_{n=0}^{\infty} a_n x^n$$

où l'on exprimera les coefficients a_n en fonction de n!, $\Gamma(\beta)$ et $\Gamma(n+\beta)$.

12) En déduire que $\phi_n = \frac{\psi_n}{n! \Gamma(\beta)}$ pour tout $n \in \mathbb{N}$, où l'on a posé :

$$\psi_n = \int_0^\infty u^{\beta - 1} e^{-u} (\alpha + u)^n \, \mathrm{d}u.$$

13) On fixe $a \in \mathbb{R}$ tel que $a > |\alpha|$. A l'aide des variations de la fonction

$$u \mapsto e^{-u}(\alpha + u)^n$$

définie pour tout $u \ge -\alpha$, montrer que $\left| \int_0^a u^{\beta-1} e^{-u} (\alpha + u)^n du \right|$ est négligeable devant $\int_a^\infty u^{\beta-1} e^{-u} (\alpha + u)^n du$ quand $n \to +\infty$.

- **14)** En déduire qu'il existe $a > |\alpha|$ tel que ψ_n soit équivalent à l'intégrale $\int_a^\infty e^{-u} (\alpha + u)^{n+\beta-1} du$ quand $n \to +\infty$.
- 15) En conclure que les suites ψ_n et $e^{\alpha} \Gamma(n+\beta)$ sont équivalentes.

On revient sur la suite $(u_n)_{n\in\mathbb{N}}$ définie au début du problème.

16) Établir un équivalent de ϕ_n , puis de u_n quand $n \to +\infty$. On prendra soin de simplifier l'équivalent trouvé de u_n en utilisant la formule de Stirling.

D. Étude de rang

Dans cette partie, on cherche à déterminer le rang r_n du système constitué des u_n matrices de \mathcal{U}_n , considérées comme des éléments de $\mathcal{M}_n(\mathbb{R})$. On rappelle que X_0 est le vecteur de \mathbb{R}^n dont tous les coefficients sont égaux à 1, et que J est la matrice de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont égaux à 1.

17) Calculer r_n pour n=2 et 3. (Dans le cas n=3, on pourra considérer les matrices J-A, où $A \in \mathcal{U}_3$.)

On considère l'espace vectoriel V_n des matrices $A \in \mathcal{M}_n(\mathbb{R})$ telles que X_0 soit à la fois un vecteur propre pour A et pour sa transposée tA .

- **18)** Montrer que $\mathcal{U}_n \subset \mathcal{V}_n$ et comparer les valeurs propres de A et de tA associées à X_0 lorsque $A \in \mathcal{V}_n$.
- 19) Déterminer la dimension de V_n . (On pourra considérer une base orthonormée de \mathbb{R}^n dont un des vecteurs est colinéaire à X_0 .) En déduire une majoration sur r_n .

Pour $n \ge 3$, soit A une matrice de \mathcal{U}_n comportant des 1 en positions (1,1) et (2,2) et des 0 en positions (1,2) et (2,1).

- **20)** Montrer qu'il existe une matrice B de \mathcal{U}_n telle que A-B ne comporte que des éléments nuls, sauf en positions (i,j) pour $i \le 2$ et $j \le 2$. En déduire que si r'_n désigne le rang du système constitué de toutes les matrices U-V où $U, V \in \mathcal{U}_n$, on a $r'_n \ge (n-1)^2$.
- 21) Conclure.

FIN DU PROBLÈME