Épreuve: MATHÉMATIQUES I

Filière TSI

Calculatrices autorisées

Définitions et notations :

- on dit qu'un nombre réel x est rationnel s'il existe deux entiers relatifs p et q (avec q non nul) tels que $x = \frac{p}{q}$;
- on dit qu'un nombre réel x est irrationnel s'il n'est pas rationnel;
- l'ensemble des nombres rationnels est noté Q;
- pour tout nombre réel x, on appelle partie entière de x et on note E(x) le plus grand entier relatif inférieur à x. On a donc $E(x) \in \mathbb{Z}$ et $E(x) \leqslant x < 1 + E(x)$.

Lorsque l'énoncé demande d'écrire un algorithme, ce dernier peut être rédigé à la convenance du candidat, dans un langage algorithmique naturel, dans un langage d'un logiciel de calcul formel utilisé en classes préparatoires, ou dans un autre langage de programmation en spécifiant lequel.

Partie I - Fonctions homographiques

I.A - Une équation différentielle

Pour tout nombre réel *a* fixé, on considère l'équation différentielle

$$(E_a)$$
 $(x-a)y'' + 2y' = 0$

où y est une fonction inconnue de la variable x de classe C^2 sur un intervalle réel et à valeurs réelles.

I.A.1) On suppose que *a* est strictement positif.

On considère une suite réelle $(a_n)_{n\in\mathbb{N}}$ et on définit une fonction y comme la somme

de la série entière
$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$
 pour $x \in]-R$, R [(avec $R > 0$).

- a) Déterminer pour tout $x \in]-R$, R[l'expression de <math>(x-a)y''(x) + 2y'(x) comme somme d'une série entière.
- b) Dans cette question, on suppose que y est solution de (E_a) .

Déterminer une relation de récurrence, vérifiée par la suite $(a_n)_{n\in\mathbb{N}}$ pour $n\geqslant 1$.

Pour $n \ge 1$, déterminer a_n en fonction de n et de a_1 puis exprimer y à l'aide des fonctions usuelles.

c) En déduire les fonctions développables en série entière qui sont solutions de (E_a) sur]-a, a [.

Montrer qu'elles forment un espace vectoriel de dimension 2 et en donner une base. En déduire l'ensemble des solutions de (E_a) sur]-a,a [.

I.A.2) On suppose que a est un nombre réel quelconque. Résoudre (E_a) sur $]-\infty, a[$, puis sur $]a, +\infty[$ et enfin sur \mathbb{R} .

I.B - Une famille de fonctions

On considère α , β , γ , δ des réels tels que γ n'est pas nul.

On pose alors pour tout x réel différent de $\frac{-\delta}{\gamma}$

$$g(x) = \frac{\alpha x + \beta}{\gamma x + \delta}.$$

I.B.1) À quelle condition *g* est-elle constante? On suppose dans la suite que cette condition n'est jamais remplie.

I.B.2)

- a) Déterminer des nombres réels u, v, w tels que : pour tout x réel différent de $\frac{-\delta}{\gamma}$, $g(x) = u + \frac{v}{x+w}$.
- b) En déduire le sens de variation de *g* sur chacun de ses intervalles de définition.
- I.B.3) On suppose dans cette question que v est strictement positif.

On se place dans le plan \mathbb{R}^2 muni d'un repère orthonormé.

On considère la courbe (C) d'équation xy = 1, la courbe (D) d'équation xy = v et la courbe (Γ) d'équation g(x) = y dans ce repère.

- a) Trouver une homothétie h telle que h(C) = D.
- b) Trouver une translation t telle que $t \circ h(C) = Γ$.
- c) À quelle condition sur v l'application $t \circ h$ est-elle une homothétie différente de l'identité? Déterminer alors son centre et son rapport.
- I.B.4) Déterminer un réel a pour lequel la fonction g est solution de (E_a) sur des intervalles que l'on précisera.

MATHÉMATIQUES I Filière TSI

Partie II - Fractions continues

On considère la fonction $f: x \mapsto \frac{1}{x - E(x)}$.

II.A - Étude de f

II.A.1) Déterminer l'ensemble de définition de f.

Montrer que f est périodique de période 1.

II.A.2) On considère un certain entier relatif k.

Déterminer des réels α , β , γ , δ tels que la restriction de f à]k, k+1[coïncide avec celle de la fonction g (telle qu'elle est définie au **I.B**) à ce même intervalle.

- II.A.3) Étudier f; on précisera en particulier ses variations, son ensemble image et on tracera son graphe dans un repère orthonormé.
- II.A.4) Démontrer que pour tout nombre x irrationnel (resp. rationnel non entier), f(x) est irrationnel (resp. rationnel).

II.B - Une suite récurrente

On pose $x_0 \in \mathbb{R}$ tel que $x_0 > 0$ et on s'intéresse lorsque cela est possible à la suite $(x_n)_{n \in \mathbb{N}}$ définie par la relation de récurrence

$$\forall n \in \mathbb{N}, x_{n+1} = f(x_n).$$

II.B.1) On suppose dans cette question que $x_0 \in \mathbb{R} \setminus \mathbb{Q}$.

Démontrer que pour tout entier naturel n, x_n est bien défini.

II.B.2) On suppose dans cette question que $x_0 \in \mathbb{Q}$ et que pour tout entier naturel n, x_n est bien défini.

On considère u_0 et v_0 deux entiers naturels non nuls tels que $x_0 = \frac{u_0}{v_0}$.

- a) Démontrer que pour tout entier naturel n, $x_n \in \mathbb{Q}$ et que pour $n \ge 1$, $x_n > 1$.
- b) On définit par récurrence deux suites d'entiers $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ en posant pour tout $n\geqslant 0$, $u_{n+1}=v_n$ et v_{n+1} égal au reste de la division euclidienne de u_n par v_n lorsque v_n est non nul et 0 sinon.

Démontrer que l'on a, pour tout entier naturel $n, v_n > 0$ et $x_n = \frac{u_n}{v_n}$.

c) Démontrer que la suite (v_n) est strictement décroissante.

L'hypothèse du B.2) est-elle possible?

Que peut-on en conclure?

II.B.3) Énoncer une condition nécessaire et suffisante sur x_0 pour que, pour tout entier naturel n, x_n soit bien défini.

II.C - Le cas irrationnel

On fixe dans toute cette partie $x_0 \in \mathbb{R} \setminus \mathbb{Q}$ tel que $x_0 > 0$. On considère la suite $(x_n)_{n \in \mathbb{N}}$ définie au B.1) et, pour tout entier naturel n, on pose $a_n = E(x_n)$. La suite des entiers $(a_n)_{n \in \mathbb{N}}$ est appelée développement en fraction continue de x_0 .

- II.C.1) Écrire un algorithme d'arguments x_0 et n donnant a_n .
- II.C.2) On pose dans cette question $x_0 = \sqrt{2}$ (on admet que c'est un irrationnel).
- a) Tester l'algorithme du II.C.1) ci-dessus sur une calculatrice pour $x_0 = \sqrt{2}$ et n valant successivement 0, 1, 2, 3, 4 pour calculer successivement a_0, a_1, a_2, a_3 et a_4 . Quelle conjecture peut-on formuler?
- b) Calculer exactement les valeurs de x_0 , x_1 , x_2 . En déduire que la suite (x_n) est stationnaire puis démontrer la conjecture du a).
- c) Les limites de la calculatrice

Tester sur une calculatrice l'algorithme pour $x_0 = \sqrt{2}$ et n = 30.

Que penser du résultat obtenu?

- d) Reprendre les trois questions précédentes avec $x_0 = \sqrt{3}$ (on admet que c'est un irrationnel).
- II.C.3) On définit deux suites $(p_n)_{n\in\mathbb{N}}$ et $(q_n)_{n\in\mathbb{N}}$ par

$$p_0 = a_0$$
, $q_0 = 1$, $p_1 = a_0 a_1 + 1$, $q_1 = a_1$

et pour tout entier naturel $n \ge 2$

$$p_n = a_n p_{n-1} + p_{n-2}$$
 et $q_n = a_n q_{n-1} + q_{n-2}$.

- a) Démontrer que pour $n \ge 1$, p_n et q_n sont des entiers naturels non nuls.
- b) Démontrer que la suite $(q_n)_{n\geqslant 1}$ est strictement croissante.

En déduire que pour tout entier naturel n, $q_n \ge n$.

MATHÉMATIQUES I Filière TSI

c) Démontrer que pour tout entier naturel *n* non nul

$$p_n q_{n-1} - p_{n-1} q_n = (-1)^{n-1}.$$

d) Démontrer que

$$\forall n \in \mathbb{N}, \ x_0 = \frac{p_n + p_{n+1}x_{n+2}}{q_n + q_{n+1}x_{n+2}}.$$

II.C.4) On définit une suite de rationnels $(r_n)_{n\in\mathbb{N}}$ par

$$\forall n \in \mathbb{N}, r_n = \frac{p_n}{q_n}.$$

a) Démontrer que pour tout entier naturel n non nul

$$r_n - r_{n-1} = \frac{(-1)^{n-1}}{q_n q_{n-1}}$$
.

- b) Montrer que la série de terme général (r_n-r_{n-1}) est alternée et convergente.
- c) En déduire que la suite $(r_n)_{n\in\mathbb{N}}$ converge.
- d) On note r la limite de la suite $(r_n)_{n \in \mathbb{N}}$.

Démontrer que pour tout entier naturel n, r est compris entre r_n et r_{n+1} et que

$$\forall n \in \mathbb{N}^*, \quad \left| r - \frac{p_n}{q_n} \right| \leqslant \frac{1}{q_n^2}.$$

- e) Écrire un algorithme d'arguments x_0 et n donnant la valeur de r_n .
- Le tester dans l'exemple $x_0 = \sqrt{2}$ et donner des valeurs approchées à 10^{-4} près de r_2 et r_3 .

Que peut-on conjecturer sur la valeur de r?

- **II.D** On considère un nombre irrationnel x_0 , deux nombres entiers α et δ strictement positifs et on pose $\beta = 1 + \alpha \delta$ et $\gamma = 1$.
- II.D.1) Démontrer que le nombre réel $y_0 = g(x_0)$ (avec g défini comme au **I.B**) est bien défini et qu'il est irrationnel.
- II.D.2) On note respectivement $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ les développements en fraction continue de x_0 et y_0 définis au **II.C**. Démontrer que pour tout entier naturel $n \ge 2$, $a_{n-1} = b_n$.

II.E - Le cas quadratique

On considère deux entiers α et δ strictement positifs et on pose :

$$\Delta = (\delta + \alpha)^2 + 4.$$

On pose comme au **II.D**, $\beta = 1 + \alpha \delta$ et $\gamma = 1$, g étant définie comme au **I.B**.

- II.E.1) Démontrer que Δ n'est pas le carré d'un entier. On en déduit et on l'admettra que $\sqrt{\Delta}$ est un nombre irrationnel.
- II.E.2) Démontrer que l'équation du second degré

$$x^2 + (\delta - \alpha)x - \alpha\delta - 1 = 0$$

possède deux solutions réelles distinctes toutes les deux irrationnelles dont l'une, notée z_0 , est strictement positive.

- II.E.3) Démontrer que $z_0 = g(z_0)$.
- II.E.4) Que peut-on en déduire quant au développement en fraction continue du nombre z_0 ?
- II.E.5) Que peut-on dire du développement en fraction continue de $\sqrt{p^2 + 1}$ pour tout $p \in \mathbb{N}^*$?

• • • FIN • • •