Épreuve: MATHÉMATIQUES II

Filière PSI

Calculatrices autorisées

Définitions et notations

Dans tout le texte, n est un entier strictement positif et E est un espace euclidien de dimension n; on note < x, y > le produit scalaire de deux éléments x et y de E; La norme utilisée est la norme euclidienne associée.

- $\mathscr{L}(E)$ désigne l'espace vectoriel des endomorphismes de E. Si f et g sont dans $\mathscr{L}(E)$, fg désigne la composée $f \circ g$ des applications et f^* désigne l'endomorphisme adjoint de f.
- Le symbole 0 désigne indifféremment l'élément nul de \mathbb{R} , de E ou de $\mathscr{L}(E)$.
- GL(E) est l'ensemble des automorphismes de E. C'est un groupe pour la composition des applications. L'application identité est notée Id_E .
- On appelle *endomorphisme antisymétrique* de E tout endomorphisme de E tel que $f^* = -f$. L'ensemble des endomorphismes antisymétriques de E est un sous-espace vectoriel de $\mathcal{L}(E)$. On pourra utiliser cette propriété sans démonstration.
- On appelle similitude de E tout endomorphisme f de E du type λg avec $\lambda \in \mathbb{R}$ et $g \in O(E)$, où O(E) est l'ensemble des automorphismes orthogonaux de E. On rappelle que O(E) est un groupe pour la composition des applications. On désigne par Sim(E) l'ensemble des similitudes de E.

Objectif du problème

Le but du problème est de calculer l'entier d_n défini de la manière suivante :

E étant un espace euclidien de dimension n, d_n est la dimension maximale d'un sous-espace vectoriel de $\mathscr{L}(E)$ inclus dans $\mathrm{Sim}(E)$ c'est-à-dire d'un sous-espace vectoriel de $\mathscr{L}(E)$ formé de similitudes.

Note : on peut démontrer – et nous l'admettrons – que la notation d_n est licite, car cet entier ne dépend effectivement que de la dimension de E.

Partie I - Premières propriétés

I.A - Étude de Sim(E)

- I.A.1) Montrer que l'ensemble des similitudes non nulles est un sous-groupe de GL(E) pour la composition des applications.
- I.A.2) Soit $h \in \mathcal{L}(E)$ un endomorphisme de E. Montrer que les propriétés suivantes sont équivalentes :
 - i) h est élément de Sim(E);
 - ii) h^*h est colinéaire à Id_E ;
- iii) la matrice de h dans une base orthonormale de E est colinéaire à une matrice orthogonale.

On appelle donc *matrice de similitude* toute matrice colinéaire à une matrice orthogonale : c'est donc la matrice d'une similitude dans une base orthormale.

I.B - Propriétés des endomorphismes antisymétriques

Soit f un endomorphisme antisymétrique de E.

- I.B.1) Montrer que : $\forall x \in E, \langle x, f(x) \rangle = 0$.
- I.B.2) Montrer que, si S est un sous-espace vectoriel de E stable par f, alors S^{\perp} est stable par f. Montrer que les endomorphismes induits par f sur S et sur S^{\perp} sont antisymétriques.
- I.B.3) Soit g un endomorphisme antisymétrique de E, tel que fg = -gf.

Montrer que : $\forall x \in E, \langle f(x), g(x) \rangle = 0.$

I.B.4) Que vaut $f^2 = f \circ f$ si f est un automorphisme orthogonal et antisymétrique de E?

I.C - Encadrement de d_n

- I.C.1) Montrer que $d_n \ge 1$.
- I.C.2) Soit V un sous-espace vectoriel de $\mathcal{L}(E)$ inclus dans Sim(E).

On fixe $x \in E \setminus \{0\}$. En considérant $\Phi : f \mapsto f(x)$, application linéaire de V dans E, montrer que $\dim(V) \leq n$.

Ainsi
$$1 \leq d_n \leq n$$
.

MATHÉMATIQUES II Filière PSI

- I.C.3) Dans cette question seulement, on suppose n=2. Expliciter un espace vectoriel de dimension 2, formé de matrices de similitudes. En déduire, avec soin, que $d_2=2$.
- I.C.4) Dans cette question seulement, on suppose n impair. Si f, g appartienment à GL(E), montrer qu'il existe $\lambda \in \mathbb{R}$ tel que $f + \lambda g$ soit non inversible.

On pourra raisonner en considérant le polynôme caractéristique de fg^{-1} . En déduire que $d_n = 1$.

I.C.5) Soit V un sous-espace vectoriel de $\mathscr{L}(E)$ inclus dans $\mathrm{Sim}(E)$, de dimension $d\geqslant 1$. Montrer qu'il existe un sous-espace vectoriel W de $\mathscr{L}(E)$ inclus dans $\mathrm{Sim}(E)$, de même dimension d, et contenant Id_E .

C'est pourquoi, dans toute la suite, on s'intéressera uniquement à des sous-espaces vectoriels de $\mathcal{L}(E)$, inclus dans Sim(E) et contenant Id_E .

I.D - Systèmes anti-commutatifs d'endomorphismes antisymétriques

Soit V un sous-espace vectoriel de $\mathcal{L}(E)$ contenant Id_E , inclus dans $\mathrm{Sim}(E)$ et de dimension $d \geqslant 2$.

Soit $(Id_E, f_1, ..., f_{d-1})$ une base de V.

- I.D.1) Montrer que pour tout $i \in \{1, 2, ..., d-1\}$, $f_i^* + f_i$ est colinéaire à Id_E .
- I.D.2) Montrer qu'il existe une base $(\mathrm{Id}_E, g_1, ..., g_{d-1})$ de V telle que pour tout $i \in \{1, 2, ..., d-1\}$, g_i soit antisymétrique (on cherchera g_i comme combinaison de f_i et id_E).
- I.D.3) On fixe une base $(\mathrm{Id}_E, g_1, ..., g_{d-1})$ de V comme définie à la question précédente c'est-à-dire avec pour tout i, g_i antisymétrique.
- a) Montrer que pour tout $i \neq j$, $g_i g_j + g_j g_i$ est colinéaire à Id_E .
- b) Montrer que l'on définit un produit scalaire sur $\mathcal{L}(E)$ en posant, pour tout f, g de $\mathcal{L}(E)$ $(f|g) = tr(f^*g)$.

On considère, dans la suite de cette question, une base $(h_1,...,h_{d-1})$ de $Vect(g_1,...,g_{d-1})$ orthogonale pour ce produit scalaire.

c) Montrer que les h_i sont antisymétriques et vérifient : $\forall i \neq j, h_i h_j + h_j h_i = 0$. Que faire pour que les h_i soient aussi des automorphismes orthogonaux?

I.D.4) Réciproquement, soit $(h_1,...,h_{d-1})$ une famille de $\mathscr{L}(E)$ telle que les h_i soient des automorphismes orthogonaux antisymétriques vérifiant pour tous $i \neq j$, $h_ih_j + h_jh_i = 0$. Montrer que $\text{Vect}(\text{Id}_E, h_1,...,h_{d-1})$ est un sous-espace vectoriel de $\mathscr{L}(E)$, de dimension d, inclus dans Sim(E).

Ainsi, si $dim(E) \ge 2$, sont équivalentes les deux propriétés :

- il existe un sous-espace vectoriel de $\mathscr{L}(E)$ de dimension $d\geqslant 2$ inclus dans $\mathrm{Sim}(E)$
- il existe une famille $(f_1, ..., f_{d-1})$ d'automorphismes orthogonaux antisymétriques de E vérifiant :

$$\forall i \neq j, f_i f_j + f_j f_i = 0.$$

Partie II - Étude dans des dimensions paires

II.A - Dans cette section, dim(E) = 2p où p est un entier impair.

II.A.1) Soit p un entier impair tel que $\dim(E) = n = 2p$. On suppose qu'il existe $d \ge 3$ et une famille $(f_1, f_2, ..., f_{d-1})$ d'éléments de $\mathscr{L}(E)$ telle que les f_i soient des automorphismes orthogonaux, antisymétriques vérifiant : $\forall i \ne j, f_i f_j + f_j f_i = 0$. Soit $x \in E$ de norme 1.

- a) Montrer que $(x, f_1(x), f_2(x), f_1f_2(x))$ est une famille orthonormale, et que $S = \text{Vect}(x, f_1(x), f_2(x), f_1f_2(x))$ est stable par f_1 et f_2 .
- b) En déduire que $d_{n-4} \geqslant 3$
- II.A.2) Dans cette question, n = 2p, avec p entier impair. Montrer que $d_n = 2$.

II.B - Dans cette section, la dimension de E est 4.

II.B.1) On suppose qu'il existe un sous-espace vectoriel de $\mathcal{L}(E)$ de dimension 4 inclus dans Sim(E).

On considère alors, conformément à I.D.4 une famille (f_1, f_2, f_3) d'éléments de $\mathcal{L}(E)$ telle que les f_i soient des automorphismes orthogonaux, antisymétriques vérifiant : $\forall i \neq j$, $f_i f_j + f_j f_i = 0$

Soit un vecteur fixé $x \in E$ de norme 1.

a) Justifier que la famille $B = (x, f_1(x), f_2(x), f_1f_2(x))$ est une base de E puis montrer qu'il existe des nombres réels $\alpha, \beta, \gamma, \delta$ tel que :

$$f_3(x) = \alpha x + \beta f_1(x) + \gamma f_2(x) + \delta f_1 f_2(x).$$

Montrer que $\alpha = \beta = \gamma = 0$ et que $\delta \in \{-1, 1\}$.

MATHÉMATIQUES II Filière PSI

- b) Montrer que $f_3 = \delta f_1 f_2$. Quitte à changer f_3 en son opposé, on suppose dans la suite que $f_3 = f_1 f_2$.
- c) Si x_0, x_1, x_2, x_3 sont des nombres réels, donner la matrice $M(x_0, x_1, x_2, x_3)$ dans B de l'endomorphisme $x_0 \text{Id}_E + x_1 f_1 + x_2 f_2 + x_3 f_3$.
- II.B.2) Vérifier que pour tout $(x_0, x_1, x_2, x_3) \in \mathbb{R}^4$, $M(x_0, x_1, x_2, x_3)$ est une matrice de similitude. Qu'en conclure?

II.C - Dans cette section, la dimension de E est 12

On suppose qu'il existe dans $\mathcal{L}(E)$, une famille (f_1, f_2, f_3, f_4) d'automorphismes orthogonaux antisymétriques vérifiant : $\forall i \neq j, f_i f_j + f_j f_i = 0$.

- II.C.1) En utilisant f_4 , montrer que f_3 ne peut être égal à $\pm f_1 f_2$.
- II.C.2) Montrer que $f_1f_2f_3$ est un automorphisme orthogonal, symétrique et non colinéaire à Id_E .
- II.C.3) Quel est le spectre de $f_1f_2f_3$?

Montrer qu'il existe $x \in E$ de norme 1 tel que $< f_1 f_2 f_3(x), x >= 0$.

On fixe un tel *x* pour la suite.

- II.C.4) Montrer que $F = (x, f_1(x), f_2(x), f_3(x), f_1f_2(x), f_1f_3(x), f_2f_3(x), f_1f_2f_3(x))$ est une famille orthonormale.
- II.C.5) On pose V = Vect(F). C'est donc un sous-espace vectoriel de E de dimension 8.
- a) Montrer que V^{\perp} est stable par f_1, f_2, f_3 .
- b) On note f_i' l'endomorphisme induit par f_i sur V^{\perp} , i = 1, 2, 3.

Justifier qu'il existe $\delta' \in \{-1,1\}$ tel que $f_3' = \delta' f_1' f_2'$.

Quitte à remplacer f_3 par $-f_3$, on considère pour la suite que $f_3' = f_1' f_2'$.

c) Soit e fixé dans V^{\perp} , de norme 1. En procédant comme au II.B.1.a) (mais ce n'est pas à refaire), on peut montrer que $(e, f_1(e), f_2(e), f_1f_2(e))$ et une base orthonormale de V^{\perp} . En remarquant que $f_3(e) = f_1f_2(e)$, utiliser cette base pour montrer que : $\forall y \in V^{\perp}, f_4(y) \in V$.

Ainsi $W = f_4(V^{\perp})$ est un sous-espace vectoriel de V de dimension 4.

- d) Montrer que la somme de W et V^{\perp} est directe et que $W \oplus V^{\perp}$ est stable par f_1, f_2, f_3, f_4 . Aboutir alors à une contradiction.
- II.C.6) En déduire la valeur de d_{12} .

II.D - Dans cette section, la dimension de E est 8

Montrer que, quel que soit $(x_0,...,x_7) \in \mathbb{R}^8$,

$$\begin{pmatrix} x_0 & -x_1 & -x_2 & -x_4 & -x_3 & -x_5 & -x_6 & -x_7 \\ x_1 & x_0 & -x_4 & x_2 & -x_5 & x_3 & -x_7 & x_6 \\ x_2 & x_4 & x_0 & -x_1 & -x_6 & x_7 & x_3 & -x_5 \\ x_4 & -x_2 & x_1 & x_0 & x_7 & x_6 & -x_5 & -x_3 \\ x_3 & x_5 & x_6 & -x_7 & x_0 & -x_1 & -x_2 & x_4 \\ x_5 & -x_3 & -x_7 & -x_6 & x_1 & x_0 & x_4 & x_2 \\ x_6 & x_7 & -x_3 & x_5 & x_2 & -x_4 & x_0 & -x_1 \\ x_7 & -x_6 & x_5 & x_3 & -x_4 & -x_2 & x_1 & x_0 \end{pmatrix}$$

est une matrice de similitude.

Que peut-on en déduire?

II.E - Conjecture du résultat général

Conjecturer la valeur de d_n dans le cas général.

• • • FIN • • •