Épreuve: MATHÉMATIQUES I

Filière PSI

Calculatrices autorisées

Le problème porte sur des déclinaisons de la lettre « C » dans différents domaines des mathématiques. Les trois parties du problème sont largement indépendantes.

Partie I - Étude d'un « C » matriciel

On considère la matrice à coefficients réels $C \in \mathcal{M}_7(\mathbb{R})$

$$C = \left(\begin{array}{ccccccc} 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 & \mathbf{1} & 0 & 0 \\ \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbf{0} & \mathbf{1} & 0 & 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & 0 & 0 \end{array}\right)$$

On note $(e_1, e_2, e_3, e_4, e_5, e_6, e_7)$ la base canonique de \mathbb{R}^7 , et c l'endomorphisme de \mathbb{R}^7 dont la matrice dans la base canonique est C. Selon l'usage, on identifie les matrices colonnes à 7 lignes à coefficients réels et les vecteurs de \mathbb{R}^7 .

On note f_1 , f_2 , f_3 , f_4 , f_5 , f_6 , f_7 les vecteurs colonnes de la matrice C.

I.A - Image et noyau de c

Déterminer une base du noyau et une base de l'image de c, ainsi que le rang de c.

I.B - Restriction de *c*

On note F le sous-espace vectoriel de \mathbb{R}^7 engendré par les trois premiers vecteurs colonnes f_1 , f_2 et f_3 de C.

- I.B.1) Montrer que F est stable par c.
- I.B.2) Montrer que (f_1, f_2, f_3) est une base de F, et calculer la matrice Φ dans cette base de l'endomorphisme φ de F induit par c.

I.C - Détermination sans calcul du spectre de Φ

Dans cette question, on se propose de calculer le spectre de Φ sans calculer son polynôme caractéristique.

I.C.1) Pourquoi 1 est-il valeur propre de Φ ?

- I.C.2) Peut-on déduire du seul calcul de la trace de Φ que Φ est diagonalisable dans $\mathcal{M}_3(\mathbb{C})$?
- I.C.3) Calculer Φ^2 . À partir des informations complémentaires obtenues par le calcul de la trace de Φ^2 , déterminer le spectre de Φ .

La matrice Φ est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{R})$?

I.D - Étude du caractère diagonalisable de C

- I.D.1) Déduire des questions précédentes le spectre de *C*. On précisera l'ordre de multiplicité des valeurs propres.
- I.D.2) La matrice C est-elle diagonalisable sur \mathbb{C} ? sur \mathbb{R} ? Si oui, indiquer une matrice diagonale semblable à C.

I.E - Étude d'une équation fonctionnelle

Notation : si f est une fonction de classe C^1 d'un ouvert \mathcal{U} de \mathbb{R}^d ($d \ge 1$) vers \mathbb{R} , on note, pour tout entier i tel que $1 \le i \le d$, $\partial_i f$ la dérivée partielle de f par rapport à sa i-ème variable. Ainsi, la notation $\partial_i f(x_1, \ldots, x_d)$ désigne la valeur de la dérivée partielle de f par rapport à sa i-ème variable évaluée au point $(x_1, \ldots, x_d) \in \mathcal{U}$.

Dans cette section, on se propose d'étudier les fonctions f de classe C^1 de \mathbb{R}^7 vers \mathbb{R} qui vérifient la condition $f \circ c = f$, c'est-à-dire telles que $f(x_3 + x_4, x_2 + x_5, x_1, x_1, x_1, x_2 + x_5, x_3 + x_4) = f(x_1, x_2, x_3, x_4, x_5, x_6, x_7)$ pour tout $(x_1, x_2, x_3, x_4, x_5, x_6, x_7) \in \mathbb{R}^7$.

- I.E.1) Quelle structure possède l'ensemble $\mathscr S$ des fonctions f de classe C^1 de $\mathbb R^7$ vers $\mathbb R$ telles que $f \circ c = f$?
- I.E.2) Montrer qu'une telle fonction vérifie $f \circ c^n = f$ pour tout entier $n \ge 1$.
- I.E.3) Soit $f \in \mathcal{S}$. Calculer la matrice jacobienne de $f \circ c$ en $X = (x_1, x_2, x_3, x_4, x_5, x_6, x_7)$. En déduire un système d'équations reliant les dérivées partielles $\partial_1 f(X), \ldots, \partial_7 f(X)$ de f en un point X de \mathbb{R}^7 .
- I.E.4) Pour $f \in \mathscr{S}$, calculer la matrice jacobienne de $f \circ c^2$ en $X = (x_1, x_2, x_3, x_4, x_5, x_6, x_7)$. Compléter le système d'équations reliant les dérivées partielles $\partial_1 f(X), \ldots, \partial_7 f(X)$ de f en un point X de \mathbb{R}^7 obtenu à la question précédente.
- I.E.5) **APPLICATION** : sans calcul supplémentaire, déterminer les formes linéaires f sur \mathbb{R}^7 qui appartiennent à \mathscr{S} .

Partie II - Équation différentielle pour la lettre « C »

Dans toute la suite du problème, on note $\mathscr C$ l'image dans $\mathbb R^2$ de l'application

$$\gamma: \left[\frac{\pi}{4}, \frac{7\pi}{4}\right] \to \mathbb{R}^2, t \mapsto (\cos t, 2\sin t).$$

Dans cette partie, on étudie l'équation différentielle

$$y(x)y'(x) = -4x. (E)$$

II.A - Transformation de solutions

Montrer que si f est une solution de (E) sur un intervalle J, et si a est un réel non nul, alors la fonction h définie par $h(x) = af\left(\frac{x}{a}\right)$ est aussi une solution de (E) sur un intervalle que l'on précisera.

II.B - Le « C » solution

On note g la fonction d'une variable réelle à valeurs réelles dont le graphe est $\gamma\left(\left[\frac{\pi}{4},\pi\right]\right)$.

- II.B.1) Déterminer l'ensemble de définition Δ de g, ainsi qu'une expression de g.
- II.B.2) Vérifier que la restriction de g au plus grand intervalle ouvert inclus dans Δ est une solution de (E).
- II.B.3) Est-ce une solution maximale? Sinon, déterminer une solution maximale m dont le graphe inclut celui de g.

II.C - Le théorème de Cauchy-Lipschitz - Solutions maximales

- II.C.1) Rappeler l'énoncé du théorème d'existence et d'unicité des solutions maximales d'une équation différentielle scalaire non linéaire soumise aux conditions de Cauchy.
- II.C.2) Expliquer comment, et éventuellement dans quelle mesure, ce théorème s'applique à (E).
- II.C.3) Les solutions maximales données par ce théorème sont-elles des solutions maximales de (E)?
- II.C.4) Déduire des questions précédentes les solutions maximales de (E).

II.D - Développement en série entière d'une solution

- II.D.1) Montrer que la solution m déterminée à la question III.B.3) est développable en série entière au voisinage de 0. Calculer ce développement et préciser son rayon de convergence.
- II.D.2) En déduire les développements en série entière de toutes les solutions maximales de (E); préciser les rayons de convergence de ces séries entières.

Partie III - Des courbes pour la lettre « C »

III.A - Topologie de $\mathscr C$

- III.A.1) Représenter \mathscr{C} .
- III.A.2) Préciser les propriétés topologiques suivantes de \mathscr{C} .
- a) Est-ce un ouvert de \mathbb{R}^2 ?
- b) Un fermé?
- c) Une partie bornée?
- d) Un compact?
- e) Une partie convexe?

III.B - Paramétrisation complexe de $\mathscr C$

On rappelle que $\mathscr C$ a été définie dans la partie II comme l'image de l'application

$$\gamma: \left[\frac{\pi}{4}, \frac{7\pi}{4}\right] \to \mathbb{R}^2, t \mapsto (\cos t, 2\sin t).$$

Dans cette question, on va chercher une paramétrisation complexe de \mathscr{C} , de la forme

$$z: \left[\frac{\pi}{4}, \frac{7\pi}{4}\right] \to \mathbb{C}, t \mapsto \rho(t) \mathrm{e}^{\mathrm{i}\theta(t)},$$

où ρ et θ sont deux fonctions continues de $\left[\frac{\pi}{4}, \frac{7\pi}{4}\right]$ vers \mathbb{R} , la fonction ρ étant à valeurs strictement positives.

- III.B.1) Calculer $\rho(t)$ pour tout $t \in \left[\frac{\pi}{4}, \frac{7\pi}{4}\right]$.
- III.B.2) Représenter sur la calculatrice l'arc paramétré

$$\mathscr{G}:\left[\frac{\pi}{4},\frac{7\pi}{4}\right]\to\mathbb{C},t\mapsto\rho(t)\mathrm{e}^{\mathrm{i}t},$$

et reproduire sommairement la courbe sur la copie. Quelle lettre cette courbe évoquet-elle ?

- III.B.3) À partir de l'expression de $\gamma(t)$, calculer tan $\theta(t)$.
- III.B.4)
- a) Représenter la fonction $t\mapsto\arctan(2\tan t)$ sur la partie de l'intervalle $\left[\frac{\pi}{4},\frac{7\pi}{4}\right]$ sur laquelle cette fonction est définie.

MATHÉMATIQUES I Filière PSI

b) Modifier cette fonction pour déterminer la fonction continue θ cherchée.

On vérifiera le résultat en représentant à l'aide de la calculatrice la courbe paramétrée z.

III.B.5) Indiquer une suite d'instructions *Maple* ou *Mathematica* permettant d'obtenir ce tracé.

III.C - Une famille de courbes paramétrées pour la lettre « C »

Dans cette question, on va construire une famille de courbes déduites de celle de la question V.A, mais donnant un aspect visuel différent de la lettre « C ».

Dans ce qui suit, la notation E(x) désignera la partie entière du réel x.

On définit les applications :

$$\bullet \alpha: \mathbb{N}^* \times \left[\frac{\pi}{4}, \frac{7\pi}{4}\right] \to \mathbb{R}, (n, t) \mapsto \frac{\pi}{4} + \frac{3\pi}{2n} \mathbb{E}\left(\frac{2n}{3\pi} \left(t - \frac{\pi}{4}\right)\right)$$

•
$$\omega : \mathbb{N}^* \times \left[\frac{\pi}{4}, \frac{7\pi}{4} \right] \to \mathbb{R}, (n, t) \mapsto \cos^2 \left(\frac{2n}{3} \left(t - \frac{\pi}{4} \right) \right).$$

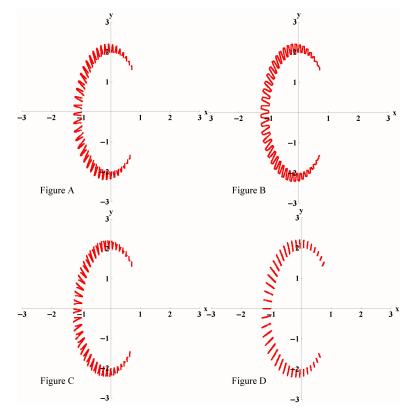
III.C.1) Étudier rapidement α et ω , puis représenter sur un même graphique les deux fonctions $t \mapsto \alpha(10, t)$ et $t \mapsto \omega(10, t)$.

III.C.2) Représenter la fonction
$$\psi: \left[\frac{\pi}{4}, \frac{7\pi}{4}\right] \to \mathbb{R}, t \mapsto \frac{1}{4} \sin\left(\frac{2}{3}\left(t - \frac{\pi}{4}\right)\right)$$
.

III.C.3) On définit la fonction :

$$w: \mathbb{N}^* \times \left[\frac{\pi}{4}, \frac{7\pi}{4}\right] \to \mathbb{C}, (n,t) \mapsto \rho(t) \left(1 + \psi(t)\omega(n,t)\right) e^{i\theta(\alpha(n,t))}.$$

On a représenté ci-contre cette courbe, lorsque n=40. Mais la courbe a été mélangée avec d'autres courbes représentant la lettre « C ». Identifier lequel des quatre graphiques représente la fonction $t\mapsto w(40,t)$, et expliquer pourquoi.



III.C.4) Écrire une séquence d'instructions *Maple* ou *Mathematica* permettant de créer la séquence des 100 premières courbes (on pourra créer une animation).

III.D - Calcul d'aire

Dans cette question, on se propose de calculer l'aire $\mathscr A$ du domaine $\mathscr H$ de $\mathbb R^2$ contenant tous les points w(n,t) lorsque n décrit $\mathbb N^*$ et t décrit $I=\left[\frac{\pi}{4},\frac{7\pi}{4}\right]$. Ce domaine est délimité par deux arcs paramétrés définis par

$$z: I \to \mathbb{C}, t \mapsto \rho(t)e^{i\theta(t)} = \sqrt{1 + 3\sin^2 t} e^{i\left(\arctan(2\tan t) + \pi E\left(\frac{t}{\pi} + \frac{1}{2}\right)\right)}$$
$$v: I \to \mathbb{C}, t \mapsto \sqrt{1 + 3\sin^2 t} \left(1 + \frac{1}{4}\sin\left(\frac{2}{3}\left(t - \frac{\pi}{4}\right)\right)\right) e^{i\left(\arctan(2\tan t) + \pi E\left(\frac{t}{\pi} + \frac{1}{2}\right)\right)}.$$

MATHÉMATIQUES I Filière PSI

Pour calculer cette aire, on va utiliser la formule de Green-Riemann. Le bord du domaine étant donné par un arc paramétré complexe de la forme $v:t\mapsto\sigma(t)\mathrm{e}^{\mathrm{i}\mu(t)}$, on va d'abord traduire ce théorème dans le cas particulier des domaines donnés sous cette forme.

III.D.1) Rappeler l'énoncé du théorème de Green-Riemann. Expliquer comment ce théorème se traduit dans le cas d'un calcul d'aire.

III.D.2) Rappeler la formule donnant le produit scalaire de deux nombres complexes. En déduire l'expression du produit scalaire $\langle u \circ v(t), v'(t) \rangle$, lorsque u et v sont les applications $u: \mathbb{C} \to \mathbb{C}, z \mapsto \mathrm{i} z$ et $v: t \mapsto \sigma(t) \mathrm{e}^{\mathrm{i} \mu(t)}$, où σ et μ sont deux fonctions définies sur un intervalle J de \mathbb{R} , à valeurs réelles et de classe C^1 .

III.D.3) Si $d(t) = \arctan(2\tan(t))$, simplifier $\frac{1}{2}(1+3\sin^2t)d'(t)$.

III.D.4) Déduire des questions précédentes une expression de $\mathcal A$ sous la forme d'une intégrale. Simplifier cette intégrale grâce à l'identité obtenue en III.D.3). Calculer enfin $\mathscr A$.

• • • FIN • • •