

EPREUVE SPECIFIQUE - FILIERE PSI

MATHEMATIQUES 1

Durée: 4 heures

Les calculatrices sont autorisées.

Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Le sujet comporte 8 pages.

Cette épreuve porte sur l'interpolation polynômiale d'une fonction et comprend trois parties.

Dans la première partie, on définit des polynômes d'interpolation.

Dans la deuxième partie, on étudie une fonction définie sur un segment. La troisième partie conduit à une formule barycentrique.

- On désigne par N l'ensemble des entiers naturels, par N^* l'ensemble N privé de 0 et par \mathbb{R} l'ensemble des nombres réels.
- Dans tout le problème, on désigne par n un entier naturel, $n \ge 2$.
- Étant donné deux entiers naturels $m \le n$, on note [m, n] l'ensemble des entiers naturels k tels que $m \le k \le n$.
- On note $\mathbb{R}_n[X]$ l'ensemble des polynômes à coefficients réels, de degré inférieur ou égal à n. Pour simplifier l'écriture, lorsque P est un polynôme de $\mathbb{R}_n[X]$, on notera de la même façon P la fonction polynôme associée.
- Étant donné un intervalle I de R et un entier naturel p, on note C^p(I,R) le R espace vectoriel des fonctions f définies sur I à valeur dans R, p fois dérivables sur I et à dérivée p-ième, notée f^(p), continue sur I. Le R espace vectoriel des fonctions continues de I dans R est, quant à lui noté C(I,R). Lorsque I est le segment [a, b], on considère sur l'espace vectoriel C([a,b],R) la norme N_∞ définie par :

pour tout
$$f \in C([a,b], \mathbb{R}): N_{\infty}(f) = \sup\{|f(x)|; x \in [a,b]\}.$$

- On note Πu_k le produit des termes u_k pour l'entier k décrivant l'ensemble indiqué.
- Pour m et p dans N avec $p \le m$, on note $\binom{m}{p}$ l'entier $\frac{m!}{p!(m-p)!}$.

PARTIE I

Dans cette partie, on considère n+1 nombres réels, deux à deux distincts, notés $x_0, x_1, ..., x_n$, et on définit la forme bilinéaire B sur $C(\mathbb{R}, \mathbb{R})$ par :

pour tout
$$(f,g) \in C(\mathbb{R},\mathbb{R}) \times C(\mathbb{R},\mathbb{R})$$
, $B(f,g) = \sum_{i=0}^{n} f(x_i)g(x_i)$.

Pour k entier, $k \in [0, n]$, on définit les polynômes L_k de $\mathbb{R}_n[X]$ par : $L_k(X) = \prod_{i=0}^n \frac{X - x_i}{x_k - x_i}$.

- I.1. Définition d'une structure euclidienne sur $\mathbb{R}_n[X]$.
 - **I.1.1.** Justifier rapidement l'affirmation : B définit un produit scalaire sur $\mathbb{R}_n[X]$ mais pas sur $C(\mathbb{R}, \mathbb{R})$.
 - **I.1.2.** Pour j et k entiers de [0,n], calculer $L_k(x_j)$. Montrer que la famille (L_k) , pour $k \in [0,n]$, est une base orthonormale de l'espace euclidien $\mathbb{R}_n[X]$ pour le produit scalaire B.
- **I.2.** Définition de $P_n(f)$.

A toute fonction f appartenant à $C(\mathbb{R},\mathbb{R})$ on associe le polynôme $P_n(f)$ défini par :

$$P_n(f) = \sum_{i=0}^n B(f, L_i) L_i.$$

- **I.2.1.** Pour tout $k \in [0, n]$, exprimer $B(f, L_k)$ en fonction de $f(x_k)$. En déduire que $P_n(f)$ vérifie $P_n(f)(x_k) = f(x_k)$ pour tout $k \in [0, n]$.
- **I.2.2.** Montrer que $P_n(f)$ est l'unique polynôme $P \in \mathbb{R}_n[X]$, vérifiant $P(x_k) = f(x_k)$ pour tout $k \in [0, n]$.
- **I.2.3.** Expliciter $P_n(f)$ lorsque $f \in \mathbb{R}_n[X]$. Préciser le polynôme $\sum_{k=0}^n L_k(X)$ et, pour X réel, la valeur de la somme $\sum_{k=0}^n L_k(X)$.

Pour $f \in C(\mathbb{R}, \mathbb{R})$, on dira que $P_n(f)$ est le polynôme d'interpolation, de degré inférieur ou égal à n, de la fonction f aux points x_i , pour $i \in [0, n]$. Lorsqu'aucune confusion n'est possible, on notera simplement P_n au lieu de $P_n(f)$.

Dans la suite de cette partie, on considère un segment [a, b] contenant les points x_i , pour $i \in [0, n]$.

I.3. Une application linéaire.

Soit Λ l'application linéaire de $C([a,b],\mathbb{R})$ dans $\mathbb{R}_n[X]$ définie par :

pour tout
$$f \in C([a,b], \mathbb{R}) : \Lambda(f) = P_n(f)$$
.

On considère l'espace vectoriel $C([a,b],\mathbb{R})$ muni de la norme N_{∞} . En identifiant tout polynôme de $\mathbb{R}_n[X]$ avec la fonction polynôme associée, on munit également $\mathbb{R}_n[X]$ de la même norme N_{∞} . On définit la norme subordonnée à la norme N_{∞} de l'application linéaire Λ par :

$$\|\Lambda\| = \sup \{ N_{\infty} (\Lambda(f)) ; N_{\infty}(f) \le 1 \}.$$

On note Φ la fonction appartenant à $C([a,b],\mathbb{R})$, définie par :

pour tout
$$t \in [a, b] : \Phi(t) = \sum_{k=0}^{n} |L_k(t)|$$
.

- **I.3.1.** Justifier l'inégalité : $\|\Lambda\| \le N_{\infty}(\Phi)$.
- **I.3.2.** Montrer qu'il existe un nombre réel $\tau \in [a, b]$ tel que $N_{\infty}(\Phi) = \Phi(\tau)$.
- **I.3.3.** Soit $\tau \in [a, b]$ tel que $N_{\infty}(\Phi) = \Phi(\tau)$. Pour tout $k \in [0, n]$, on définit ε_k par $\varepsilon_k = 0$ lorsque $L_k(\tau) = 0$ et $\varepsilon_k = \frac{|L_k(\tau)|}{L_k(\tau)}$ lorsque $L_k(\tau) \neq 0$. Soit ψ la fonction définie sur [a, b] vérifiant les propriétés suivantes :
 - ψ est continue sur [a,b],
 - pour tout $k \in [0, n]$, $\psi(x_k) = \varepsilon_k$,
 - pour tout $k \in [0, n-1]$ la restriction de ψ à chaque intervalle $[x_k, x_{k+1}]$ est de la forme $\psi(t) = a_k t + b_k$ où a_k et b_k sont des réels. Les restrictions de ψ à $[a, x_0]$ et à $[x_n, b]$ sont constantes.

En calculant $\Lambda(\psi)(\tau)$ déterminer $\|\Lambda\|$.

I.4. Un résultat auxiliaire.

Soit p un entier naturel non nul et soit $g \in C^p([a,b],\mathbb{R})$ une fonction s'annulant en p+1 points distincts $c_0 < c_1 < \dots < c_p$ de l'intervalle [a,b].

- **I.4.1.** Montrer que la fonction dérivée g' s'annule en au moins p points de [a, b].
- **I.4.2.** En déduire qu'il existe un point $\alpha \in [a, b]$ tel que $g^{(p)}(\alpha) = 0$.

I.5. Une expression de $f - P_n$.

On note T_{n+1} le polynôme de $\mathbb{R}_{n+1}[X]$ défini pour x réel par $T_{n+1}(x) = \prod_{i=0}^{n} (x - x_i)$. Soit f une fonction appartenant à $C^{n+1}([a,b],\mathbb{R})$ et soit y un réel de [a,b], distinct de tous les x_i , pour $i \in [0,n]$. On note P_n (respectivement P_{n+1}) le polynôme d'interpolation de f de degré inférieur ou égal à n (respectivement inférieur ou égal à n+1) aux points x_i , pour $i \in [0,n]$ (respectivement au point y et aux points x_i , pour $i \in [0,n]$).

I.5.1. Montrer qu'il existe un réel r tel que, pour tout $x \in \mathbb{R}$, on ait :

$$P_{n+1}(x) - P_n(x) = rT_{n+1}(x).$$

I.5.2. En appliquant à la fonction $g = f - P_{n+1}$ un résultat obtenu en **I.4.**, montrer qu'il existe un réel $\beta \in [a, b]$ tel que : $f^{(n+1)}(\beta) = r(n+1)!$

En déduire que pour tout $y \in [a, b]$, il existe $\beta \in [a, b]$ tel que :

(1)
$$f(y) - P_n(y) = \frac{1}{(n+1)!} T_{n+1}(y) f^{(n+1)}(\beta).$$

I.5.3. Montrer que l'égalité (1) est aussi vérifiée lorsque l'on remplace y par l'un des x_i , pour $i \in [0, n]$.

PARTIE II

Soit n un entier naturel supérieur ou égal à 2. On considère la fonction φ définie sur le segment [0, n] par : $\varphi(t) = |t(t-1)\cdots(t-n)|$.

II.1. Étude du maximum de φ .

- **II.1.1.** Montrer que la fonction φ admet un maximum sur l'intervalle [0, n].
- **II.1.2.** Soit $t \in [0, n]$: comparer $\varphi(n-t)$ et $\varphi(t)$.
- **II.1.3.** On suppose t > 1 et $t \notin \mathbb{N}$. Calculer $\frac{\varphi(t-1)}{\varphi(t)}$.

En déduire que pour $t \in \left[1, \frac{n}{2}\right]$, on a $\varphi(t-1) \ge \varphi(t)$.

II.1.4. On suppose n pair et on note n = 2p. Montrer que φ atteint son maximum en un point de l'intervalle [0,1] en supposant d'abord que p = 1 puis $p \ge 2$.

On admettra que pour n impair, φ atteint son maximum en un point de [0,1].

II.2. Abscisse du maximum de la fonction φ .

- **II.2.1.** Soit $t \notin \mathbb{N}$, expliciter $\ln(\varphi(t))$, où la désigne la fonction logarithme népérien ; en déduire $\frac{\varphi'(t)}{\varphi(t)}$ en fonction de $\sum_{k=0}^n \frac{1}{t-k}$.
- II.2.2. Pour $t \in \left[\frac{1}{2}, 1\right[$, déterminer le signe de la somme $\sum_{k=2}^{n} \frac{1}{t-k}$. En déduire que $\varphi'(t)$ est strictement négatif sur l'intervalle $\left[\frac{1}{2}, 1\right[$.
- II.2.3. Calculer la dérivée de la fonction définie sur]0,1[par : $g(t) = \sum_{k=0}^{n} \frac{1}{t-k}$.

Déterminer le sens de variation de la fonction g. En déduire que la fonction φ' s'annule en au plus un point de]0,1[.

II.2.4. Montrer que le maximum de φ est atteint en un point et un seul de $\left]0,\frac{1}{2}\right[$, noté t_n . Quelle est la valeur de la somme $\sum_{k=0}^{n}\frac{1}{t_n-k}$?

II.3. Étude de l'abscisse t_n du maximum de φ .

II.3.1. On suppose $k \in \mathbb{N}^*$, justifier l'inégalité $\frac{1}{k - t_n} > \frac{1}{k}$.

En déduire une minoration de $\frac{1}{t_n}$.

II.3.2. Préciser la nature de la série $\sum_{k\geq 1} \frac{1}{k}$.

En déduire la limite de $\frac{1}{t_n}$ et par suite, celle de t_n lorsque $n \to +\infty$.

II.4. Une majoration de φ .

II.4.1. Montrer l'inégalité
$$\int_{1}^{n+1} \frac{dt}{t} < \sum_{k=1}^{n} \frac{1}{k}.$$

II.4.2. Montrer l'inégalité
$$t_n < \frac{1}{\ln(n+1)}$$
.

II.4.3. En déduire, que pour tout $t \in [0, n]$, on a la majoration $\varphi(t) < \frac{n!}{\ln(n+1)}$.

II.5. Une majoration de $N_{\infty}(f-P_n)$.

Dans cette question, on reprend les notations de la partie I.

Soit [a, b] un segment, on note $h = \frac{b-a}{n}$ et on considère les n+1 points équidistants $x_i = a+ih$ de [a, b], pour $i \in [0, n]$.

II.5.1. Pour $x \in [a, b]$, on note $t = \frac{x - a}{h} \in [0, n]$. On note T_{n+1} le polynôme défini en **I.5.** par $T_{n+1}(x) = \prod_{i=0}^{n} (x - x_i)$. Exprimer $|T_{n+1}(x)|$ en fonction de h et de $\varphi(t)$.

II.5.2. Soit $f \in C^{n+1}([a,b], \mathbb{R})$ et soit P_n son polynôme d'interpolation, de degré inférieur ou égal à n, aux points équidistants x_i , pour $i \in [0,n]$, défini en **I.2.** Montrer l'inégalité :

(2)
$$N_{\infty}(f-P_n) \le \frac{h^{n+1}}{(n+1)\ln(n+1)} N_{\infty}(f^{(n+1)}).$$

PARTIE III

On conserve les notations des parties **I** et **II**, avec en particulier des réels x_i , pour $i \in [0, n]$, distincts. On définit les n+1 réels $w_k = \frac{1}{\prod\limits_{i=0}^{n} (x_k - x_i)}$, pour $k \in [0, n]$.

III.1. Soit x un réel et soit k un entier de [0, n]. Exprimer $T_{n+1}(x)$ en fonction de $L_k(x)$, $x - x_k$ et w_k .

III.2. Soit $f \in C(\mathbb{R}, \mathbb{R})$ et soit P_n son polynôme d'interpolation, de degré inférieur ou égal à n, aux points x_i , pour $i \in [0, n]$. On suppose x différent de tous les x_i , pour $i \in [0, n]$.

Montrer l'égalité:

(3)
$$P_n(x) = T_{n+1}(x) \sum_{k=0}^n \frac{w_k f(x_k)}{x - x_k}.$$

Calculer
$$T_{n+1}(x) \sum_{k=0}^{n} \frac{W_k}{x - x_k}$$
.

En déduire la formule barycentrique :

(4)
$$P_n(x) = \frac{\sum_{k=0}^{n} \frac{w_k f(x_k)}{x - x_k}}{\sum_{k=0}^{n} \frac{w_k}{x - x_k}}.$$

III.3. Dans cette question, on suppose les points x_i équidistants. On note $h = \frac{x_n - x_0}{n}$ et $x_i = a + ih$, pour $i \in [0, n]$. On se propose d'établir une formule barycentrique en remplaçant les w_k par des coefficients entiers relatifs.

III.3.1. Exprimer w_k en fonction de h, de n et de k.

Soit $w_k^* = (-1)^n h^n n! w_k$. Exprimer w_k^* à l'aide d'un entier de la forme $\binom{m}{p}$, où m et p sont à préciser en fonction de n et k.

III.3.2. On suppose x différent de tous les x_i , pour $i \in [0, n]$. Montrer la formule :

(5)
$$P_{n}(x) = \frac{\sum_{k=0}^{n} (-1)^{k} \binom{n}{k} \frac{f(x_{k})}{x - x_{k}}}{\sum_{k=0}^{n} (-1)^{k} \binom{n}{k} \frac{1}{x - x_{k}}}.$$

III.4. Une valeur approchée de $\cos\left(\frac{\pi x}{2}\right)$.

On suppose que $f(x) = \cos\left(\frac{\pi x}{2}\right)$ et on considère les 4n+1 points équidistants compris entre $x_0 = -2n$ et $x_{4n} = 2n$.

III.4.1. Déterminer X_k pour $k \in [0, 4n]$.

III.4.2. Montrer que

(6)
$$P_{4n}(x) = \frac{\sum_{k=-n}^{n} (-1)^k \binom{4n}{2n+2k} \frac{1}{x-2k}}{\sum_{k=-2n}^{2n} (-1)^k \binom{4n}{2n+k} \frac{1}{x-k}}$$
 est, pour x différent de tous les x_k ,

la valeur en x d'un polynôme d'interpolation de la fonction $\cos\left(\frac{\pi x}{2}\right)$, en des points équidistants que l'on précisera.

III.4.3. Soit $x \in [-2n,2n]$ et soit p la partie entière de x.

Montrer l'inégalité :
$$\prod_{k=-2n}^{2n} |x-k| \le (2n+p+1)!(2n-p)!$$

III.4.4. Montrer que pour x fixé dans [-2n,2n] et non entier, on a :

$$|f(x)-P_{4n}(x)| \le (2n+p+1)!(2n-p)!\frac{\left(\frac{\pi}{2}\right)^{4n+1}}{(4n+1)!} = \theta(n,p).$$

Quelle est la limite de $\theta(n, p)$ lorsque n tend vers $+\infty$?

Fin de l'énoncé.