

EPREUVE SPECIFIQUE FILIERE PC

MATHEMATIQUES 2

Durée: 4 heures

Les calculatrices sont interdites

N.B.: Le candidat attachera la plus grande importance à la clarté, la précision et à la concision de la rédaction; si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

PARTIE I

On note $\mathcal{D}=\mathbb{R}\setminus (-\mathbb{N}^*)$ l'ensemble des nombres réels qui ne sont pas des nombres entiers strictement négatifs.

On considère la série de fonctions d'une variable réelle de terme général u_n défini par :

$$\forall n \in \mathbb{N}^*, \quad \forall x \in \mathbb{R}, x \neq -n, \quad u_n(x) = \frac{1}{(n+x)^2}.$$

I.1. Montrer que cette série de fonctions converge simplement sur \mathcal{D} .

On notera désormais $U = \sum_{n=1}^{+\infty} u_n$ la somme de cette série de fonctions, et, pour tout $n \in \mathbb{N}^*$,

 $U_n = \sum_{k=1}^n u_k$ la somme partielle d'ordre n et $R_n = \sum_{k=n+1}^{+\infty} u_k$ le reste correspondant. On a donc $R_n = U - U_n$ pour tout $n \in \mathbb{N}^*$.

I.2.

- **I.2.1.** Soit $p \in \mathbb{N}^*$ donné. Pour tout $n \in \mathbb{N}^*$, soit $u_n^{(p)}$ la dérivée de u_n à l'ordre p. Calculer $u_n^{(p)}(x)$ pour tout $x \in \mathbb{R}$, $x \neq -n$.
- **I.2.2.** Soient a et b deux nombres réels tels que -1 < a < b. Montrer que la série de fonctions de terme général $u_n^{(p)}$ converge normalement sur [a,b].
- **I.2.3.** Déduire de ce qui précède que U est de classe \mathcal{C}^{∞} sur $]-1,+\infty[$.

- I.3.
 - **I.3.1.** Soit $N \in \mathbb{N}^*$ donné. Pour tout $x \in \mathcal{D}$, exprimer U(x) à l'aide de $U_N(x)$ et U(x+N).
 - **I.3.2.** En déduire que U est de classe \mathcal{C}^{∞} sur]-N-1,-N[, puis sur \mathcal{D} .
 - **I.3.3.** Soit $p \in \mathbb{N}$ donné, $p \geq 2$.

Pour tout $x \in \mathcal{D}$, établir une expression de $\sum_{n=1}^{+\infty} \frac{1}{(n+x)^p}$ à l'aide de p et de $U^{(p-2)}(x)$.

- **I.4.** Soit $N \in \mathbb{N}^*$ donné. Donner un équivalent de U(x) lorsque x tend vers -N.
- I.5.
 - **I.5.1.** Montrer que U est strictement décroissante sur $]-1,+\infty[$.
 - **I.5.2.** Montrer que pour tout x > 0 on a $\int_{x+1}^{+\infty} \frac{dt}{t^2} \le U(x) \le \int_x^{+\infty} \frac{dt}{t^2}$. En déduire un équivalent de U(x) lorsque x tend vers $+\infty$.
- **I.6.** Montrer que pour tout $x \in \mathcal{D}$ on a $U(x) = \frac{1}{4} \left[U\left(\frac{x}{2}\right) + U\left(\frac{x-1}{2}\right) \right]$.

PARTIE II

II.1. Pour tout $p \in \mathbb{N}$ on note f_p la fonction définie sur \mathbb{R}^* par :

$$\forall t \in \mathbb{R}^*, \qquad f_p(t) = \frac{t^{p+1}}{e^t - 1}.$$

II.1.1. Déterminer $\lim_{t\to 0} f_p(t)$ selon les valeurs de p.

On notera désormais f_p la fonction f_p prolongée par continuité à \mathbb{R} tout entier.

- II.1.2. Déterminer un équivalent de $f_p(t)$ lorsque t tend vers $+\infty$.
- **II.2.** Soit φ la fonction d'une variable réelle x définie par :

$$\varphi(x) = \int_0^{+\infty} f_0(t)e^{-xt}dt = \int_0^{+\infty} \frac{te^{-xt}}{e^t - 1}dt.$$

- **II.2.1.** Montrer que le domaine de définition de φ est $]-1,+\infty[$.
- **II.2.2.** Soient $p \in \mathbb{N}$ et $a \in]-1, +\infty[$ donnés.

Vérifier que pour tout $x \ge a$ et tout $t \ge 0$ on a $0 \le f_p(t)e^{-xt} \le f_p(t)e^{-at}$. Montrer que la fonction $t \mapsto f_p(t)e^{-at}$ est intégrable sur $[0, +\infty[$.

- **II.2.3.** Déduire de ce qui précède que φ est de classe \mathcal{C}^{∞} sur $]-1,+\infty[$.
- II.2.4. Déterminer $\lim_{x \to +\infty} \varphi(x)$.
- II.3.
 - II.3.1. Montrer que $\varphi(x) \varphi(x+1) = \frac{1}{(x+1)^2}$ pour tout x > -1.
 - II.3.2. En déduire que $\varphi(x) = U(x)$ pour tout x > -1.

II.3.3. Soit $p \in \mathbb{N}$ donné, $p \geq 2$.

Pour tout
$$x > -1$$
, exprimer $\sum_{p=1}^{+\infty} \frac{1}{(n+x)^p}$ à l'aide de p et de $\int_0^{+\infty} \frac{t^{p-1}e^{-xt}}{e^t - 1} dt$.

PARTIE III

Soit g la fonction d'une variable réelle x, périodique de période 2π , telle que :

$$\forall x \in [-\pi, +\pi[, \qquad g(x) = \frac{\pi}{2} - |x|.$$

Soit $\frac{1}{2}a_0(g) + \sum_{n=1}^{+\infty} (a_n(g)\cos nx + b_n(g)\sin nx)$ la somme de la série de Fourier de g.

III.1. Préciser pourquoi g est égale en tout point de \mathbb{R} à la somme de sa série de Fourier.

III.2.

III.2.1. Calculer $b_n(g)$ pour tout $n \in \mathbb{N}^*$.

III.2.2. Calculer $a_n(g)$ pour tout $n \in \mathbb{N}$.

III.3.

III.3.1. Calculer
$$\sum_{k=1}^{+\infty} \frac{1}{(2k-1)^2}$$
.

III.3.2. En déduire la valeur de $U\left(-\frac{1}{2}\right)$, puis celle de U(0).

III.4. Calculer $\sum_{k=1}^{+\infty} \frac{1}{(2k-1)^4}$. En déduire la valeur de la somme $\sum_{n=1}^{+\infty} \frac{1}{n^4}$.

III.5. On note G la primitive de g telle que G(0) = 0.

III.5.1. Montrer que G est impaire, périodique de période 2π .

III.5.2. Calculer les coefficients de Fourier de G.

Préciser pourquoi G est égale en tout point de \mathbb{R} à la somme de sa série de Fourier.

III.5.3. Calculer les sommes
$$\sum_{k=1}^{+\infty} \frac{1}{(2k-1)^6}$$
 et $\sum_{n=1}^{+\infty} \frac{1}{n^6}$.

Fin de l'énoncé