

EPREUVE SPECIFIQUE - FILIERE PSI

MATHEMATIQUES 1

Durée: 4 heures

Les calculatrices sont autorisées.

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Le sujet comporte 5 pages.

Notations:

Pour tout nombre réel x tel que l'intégrale généralisée $\int_0^{+\infty} \frac{1-\cos t}{t^2} e^{-xt} dt$ converge, on note $\varphi(x)$ la valeur de cette intégrale.

Pour tout entier naturel non nul m tel que l'intégrale généralisée $\int_0^{+\infty} \frac{\left(\sin t\right)^m}{t} dt$ converge, on désigne par J_m sa valeur.

Objectifs:

L'objet de ce problème est d'étudier l'existence et un procédé de calcul éventuel de J_m .

La partie I est consacrée à l'étude de la fonction φ pour obtenir un résultat qui concerne J_1 .

L'étude de l'existence de J_m fait l'objet de la partie II.

La partie III voit la mise en œuvre d'un procédé de calcul des intégrales J_m (lorsqu'elles convergent).

PARTIE I

Étude de la fonction φ

Rappel:
$$\varphi(x) = \int_0^{+\infty} \frac{1 - \cos t}{t^2} e^{-xt} dt$$
.

On désigne par d (respectivement δ) la fonction définie sur $\left[0;+\infty\right[$ par : $d(t)=t-1+\cos t$ (respectivement $\delta(t)=\frac{t^2}{2}-1+\cos t$).

I.1/ Étude des fonctions d et δ .

- **I.1.1**/ Étudier la fonction d; en déduire qu'il existe un nombre réel α tel que, pour tout nombre réel t strictement positif, on ait l'inégalité : $0 \le \frac{1 \cos t}{t} \le \alpha$.
- I.1.2/ Étudier la fonction δ ; en déduire qu'il existe un nombre réel β tel que, pour tout nombre réel t strictement positif, on ait l'inégalité : $0 \le \frac{1-\cos t}{t^2} \le \beta$.

I.2/ Existence de la fonction φ sur $[0;+\infty[$.

Établir la convergence de l'intégrale généralisée $\int_0^{+\infty} \frac{1-\cos t}{t^2} dt$. En déduire que $\varphi(x)$ existe pour tout x appartenant à $[0;+\infty[$.

I.3/ Limite de la fonction φ en $+\infty$.

- **I.3.1**/ Préciser le signe de $\varphi(x_1) \varphi(x_2)$ pour $0 \le x_1 \le x_2$. En déduire que la fonction φ admet une limite finie λ en $+\infty$.
- **I.3.2**/ Déterminer la valeur de λ (on pourra utiliser I.1.2).

I.4/ Caractère C^k de la fonction φ .

- **I.4.1**/ Montrer que la fonction φ est continue sur $[0; +\infty[$.
- **I.4.2**/ Montrer que la fonction φ est de classe C^1 sur $]0;+\infty[$ (on pourra utiliser I.1.1).
- **I.4.3**/ Montrer que la fonction φ admet une limite finie (que l'on précisera) en $+\infty$.
- **I.4.4**/ Montrer que la fonction φ est de classe C^2 sur $]0;+\infty[$.
- **I.4.5**/ Expliciter $\varphi''(x)$ pour x appartenant à $]0;+\infty[$.
- **I.4.6**/ Expliciter $\varphi'(x)$ pour x appartenant à $]0; +\infty[$. La fonction φ est-elle dérivable en 0?

I.5/ Expression explicite de fonction $\varphi(x)$.

- **I.5.1**/ Déterminer la limite de $x \ln \left(\frac{x^2}{x^2 + 1} \right)$ lorsque x tend vers $+\infty$.
- **I.5.2**/ Expliciter une primitive de la fonction : $x \mapsto \ln(x^2 + 1)$ (on pourra utiliser une intégration par parties).
- **I.5.3**/ Expliciter $\varphi(x)$ pour x appartenant à $[0; +\infty[$.
- **I.5.4**/ Déterminer $\varphi(0)$.

PARTIE II

Étude de l'existence de J_m

Rappel:
$$J_m = \int_0^{+\infty} \frac{\left(\sin t\right)^m}{t} dt$$
 et $\varphi(x) = \int_0^{+\infty} \frac{1 - \cos t}{t^2} e^{-xt} dt$.

II.1/ Étude de
$$\int_0^{\frac{\pi}{2}} \frac{\left(\sin t\right)^m}{t} dt$$
.

Justifier la convergence de l'intégrale généralisée $\int_0^{\frac{\pi}{2}} \frac{\left(\sin t\right)^m}{t} dt$ pour tout entier naturel non nul m. Pour tout entier relatif k tel que l'intégrale généralisée $\int_{\frac{\pi}{2}}^{+\infty} \frac{e^{ikt}}{t} dt$ converge, on note I_k la valeur de cette intégrale.

II.2/ Étude de J_1 .

Justifier l'existence de J_1 et établir une relation entre J_1 et $\varphi(0)$ (on pourra utiliser une intégration par parties, en remarquant que $(1-\cos)'=\sin$).

II.3/ Étude de l'existence de I_k .

Préciser la nature de l'intégrale généralisée I_k selon la valeur de l'entier relatif k (on pourra utiliser une intégration par parties).

II.4/ Étude de la nature de J_m

Pour tout x appartenant à $\left[\frac{\pi}{2}; +\infty\right[$ et tout entier relatif k, on note : $I_k(x) = \int_{\frac{\pi}{2}}^x \frac{e^{ikt}}{t} dt$.

II.4.1/ Exprimer, pour tout entier naturel non nul m et pour tout nombre réel x appartenant à $\left[\frac{\pi}{2}; +\infty\right[$, l'intégrale $\int_{\frac{\pi}{2}}^{x} \frac{\left(\sin t\right)^{m}}{t} dt$ à l'aide des intégrales $I_{k}(x)$.

II.4.2/ En déduire l'existence de $J_{2,p+1}$ pour tout entier naturel p.

II.4.3/ Quelle est la nature de l'intégrale généralisée $\int_0^{+\infty} \frac{\left(\sin t\right)^{2p}}{t} dt$ pour p entier naturel non nul?

PARTIE III

Calcul de J_{2p+1}

III.1/ Un développement de Fourier.

On désigne par x un nombre réel fixé, non multiple entier de π , par h_x la fonction définie sur \mathbb{R} , à valeurs réelles, 2π – périodique et vérifiant : $h_x(t) = \cos\left(\frac{x}{\pi}t\right)$ pour tout $t \in]-\pi;\pi]$.

III.1.1/ Calculer les coefficients de Fourier réels $a_n(h_x)$ et $b_n(h_x)$ de la fonction h_x . On rappelle que pour tout entier naturel n:

$$a_n(h_x) = \frac{1}{\pi} \int_{-\pi}^{\pi} h_x(t) \cos(nt) dt \quad \text{et} \quad b_n(h_x) = \frac{1}{\pi} \int_{-\pi}^{\pi} h_x(t) \sin(nt) dt .$$

III.1.2/ Justifier la convergence de la série $\sum_{n\geq 1} \left(-1\right)^n \frac{2x \sin x}{x^2 - n^2 \pi^2}$ et déduire de III.1.1 la valeur de la somme : $\frac{\sin x}{x} + \sum_{n=1}^{+\infty} \left(-1\right)^n \frac{2x \sin x}{x^2 - n^2 \pi^2}$.

III.2/ Étude d'un procédé de calcul.

On désigne par f une fonction définie et <u>continue</u> sur $\begin{bmatrix} -1 \ ; \ 1 \end{bmatrix}$ à valeurs réelles ; on suppose de plus que f est <u>impaire</u> et dérivable en 0.

Pour tout entier naturel non nul *n* on pose :

$$\cdot \gamma_n = \int_{\frac{\pi}{2} + (n-1)\pi}^{\frac{\pi}{2} + n\pi} \frac{f(\sin t)}{t} dt,$$

.
$$u_n$$
 l'application de $\left[0; \frac{\pi}{2}\right]$ dans \mathbb{R} définie par $u_n(t) = (-1)^n \frac{2t \ f(\sin t)}{t^2 - n^2 \pi^2}$,

$$\mu_n = \int_0^{\frac{\pi}{2}} u_n(t) dt.$$

III.2.1/ Déterminer la limite de γ_n lorsque n tend vers $+\infty$.

III.2.2/ Etablir (pour tout entier naturel non nul n) une relation entre γ_n et μ_n .

III.2.3/ Établir la convergence, pout tout t appartenant à $\left[0 ; \frac{\pi}{2}\right]$ de la série $\sum_{n\geq 1} u_n(t)$.

Désormais on note $S(t) = \sum_{n=1}^{+\infty} u_n(t)$ pour tout t appartenant à $\left[0; \frac{\pi}{2}\right]$.

III.2.4/ Montrer que la fonction S est continue sur $\left[0 ; \frac{\pi}{2}\right]$.

III.2.5/ Justifier la convergence de la série
$$\sum_{n\geq 1} \gamma_n$$
 et l'égalité $\int_0^{\frac{\pi}{2}} S(t) dt = \sum_{n=1}^{+\infty} \gamma_n$.

III.2.6/ Justifier la convergence de l'intégrale généralisée $\int_{\frac{\pi}{2}}^{+\infty} \frac{f(\sin t)}{t} dt$ et l'égalité

$$\int_0^{\frac{\pi}{2}} S(t) dt = \int_{\frac{\pi}{2}}^{+\infty} \frac{f(\sin t)}{t} dt.$$

III.2.7/ Justifier la convergence des intégrales généralisées $\int_0^{\frac{\pi}{2}} \frac{f(\sin t)}{\sin t} dt = \text{et}$ $\int_0^{\frac{\pi}{2}} \frac{f(\sin t)}{t} dt.$

III.2.8/ Exprimer la différence $\int_0^{+\infty} \frac{f(\sin t)}{t} dt - \int_0^{\frac{\pi}{2}} \frac{f(\sin t)}{\sin t} dt$ à l'aide de l'intégrale d'une fonction continue sur le segment $\left[0; \frac{\pi}{2}\right]$.

III.3/ Application au calcul de J_{2p+1} .

III.3.1 / En utilisant les résultats obtenus en III.1 et III.2 retrouver la valeur de J_1 (déjà obtenue en II.2).

III.3.2/ Calculer J_3 .

III.3.3/ Plus généralement expliciter J_{2p+1} pour tout entier naturel p.

Fin de l'énoncé

