A 2008 MATH. I MP

ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES.

ÉCOLES NATIONALES SUPÉRIEURES
DE L'AÉRONAUTIQUE ET DE L'ESPACE,
DE TECHNIQUES AVANCÉES,
DES TÉLÉCOMMUNICATIONS,
DES MINES DE PARIS,
DES MINES DE SAINT-ÉTIENNE,
DES MINES DE NANCY,
DES TÉLÉCOMMUNICATIONS DE BRETAGNE.
ÉCOLE POLYTECHNIQUE (FILIÈRE TSI).

CONCOURS D'ADMISSION 2008

PREMIÈRE ÉPREUVE DE MATHÉMATIQUES

Filière MP

 $(Dur\'ee \ de \ l'\'epreuve : 3 \ heures) \\ L'usage \ d'ordinateur ou \ de \ calculette \ est \ interdit.$

Sujet mis à la disposition des concours : ENSAE ParisTech, ENSTIM, TELECOM SudParis (ex TELECOM INT), TPE-EIVP, Cycle international

Les candidats sont priés de mentionner de façon apparente sur la première page de la copie :

MATHÉMATIQUES I - MP

L'énoncé de cette épreuve comporte 6 pages de texte.

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Inégalité d'Alexandrov

Dans tout ce problème, n est un entier au moins égal à 1. On note \mathfrak{S}_n le groupe des permutations de $I_n = \{1, \dots, n\}$.

On note $\mathcal{M}_{n,p}(\mathbf{R})$ l'espace vectoriel des matrices à n lignes et p colonnes, à coefficients réels. Pour une matrice $M \in \mathcal{M}_{n,n}(\mathbf{R})$ de coefficients m_{ij} , on notera m_j le j-ème vecteur colonne de M, celui dont les composantes sont $(m_{ij}, i = 1, \dots, n)$. On écrira ainsi

$$M=(m_1,\cdots,m_n).$$

On remarquera que m_{ij} est indifféremment le coefficient en ligne i et colonne j de M ainsi que la i-ième composante de m_j . On identifiera une matrice colonne m et le vecteur de \mathbf{R}^n dont les composantes dans la base canonique de \mathbf{R}^n sont les coefficients de m. On note $\| \ \|$ la norme euclidienne de \mathbf{R}^n et x.y représente le produit scalaire euclidien de deux vecteurs de \mathbf{R}^n . On note S la sphère unité de \mathbf{R}^n , c'est-à-dire

$$S = \{x / ||x|| = 1\}.$$

Pour une matrice $M \in \mathcal{M}_{n,n}(\mathbf{R})$, pour i et j éléments de $\{1, \dots, n\}$, on note M(i|j) la matrice obtenue en supprimant de M la i-ème ligne et la j-ième colonne. Pour un vecteur colonne m, m(j) représente le vecteur colonne m duquel on a ôté la j-ième composante.

Soit Q une matrice symétrique réelle de $\mathcal{M}_{n,n}(\mathbf{R})$. On note B_Q la forme bilinéaire associée : pour tout x et y de \mathbf{R}^n ,

$$B_Q(x, y) = Qx.y,$$

et on note Φ_Q la forme quadratique associée : $\Phi_Q(x) = B_Q(x, x)$.

Définition 1. Soit V un sous-espace vectoriel de \mathbb{R}^n , on dira que Φ_Q est définie positive (respectivement positive, respectivement définie négative) sur V lorsque

$$\Phi_O(x) > 0$$
 pour tout x appartenant à $V \cap S$

(respectivement $\Phi_Q(x) \geqslant 0$, respectivement $\Phi_Q(x) < 0$). On notera \mathcal{V}^+ (respectivement \mathcal{V}_0^+ , respectivement \mathcal{V}^-) l'ensemble des sous-espaces vectoriels sur lesquels Φ_Q est définie positive (respectivement positive, respectivement définie négative). On pose

$$r(\Phi_Q) = \max_{V \in \mathcal{V}^+} (\dim V) \ et \ s(\Phi_Q) = \max_{V \in \mathcal{V}^-} (\dim V),$$

avec la convention que $\max_{V \in \emptyset} \dim V = 0$.

I Permanents

Définition 2. Pour $M = (m_1, ..., m_n) \in \mathcal{M}_{n,n}(\mathbf{R})$, on définit son permanent, noté per, par

per :
$$\left(\mathcal{M}_{n,1}(\mathbf{R})\right)^n \longrightarrow \mathbf{R}$$

 $(m_1, \dots, m_n) \longmapsto \sum_{\sigma \in \mathfrak{S}_n} m_{1\sigma(1)} m_{2\sigma(2)} \dots m_{n\sigma(n)}.$

On tiendra pour acquis que la forme per est multilinéaire et symétrique, c'est-à-dire invariante par permutation des vecteurs.

1. Établir pour tous m_1, m_2, \dots, m_n éléments de $\mathfrak{M}_{n,1}(\mathbf{R})$, l'inégalité

$$|\operatorname{per}(m_1, \dots, m_n)| \leq n! \prod_{j=1}^n ||m_j||.$$

2. Pour (m_1, \dots, m_n) et $(r_1, r_2 \dots, r_n)$ éléments de $\left(\mathcal{M}_{n,1}(\mathbf{R})\right)^n$, établir l'inégalité suivante :

$$|\operatorname{per}(m_1, \dots, m_n) - \operatorname{per}(r_1, \dots, r_n)|$$

 $\leq n! \sum_{j=1}^n ||m_1|| \dots ||m_{j-1}|| ||m_j - r_j|| ||r_{j+1}|| \dots ||r_n||,$

où l'on convient que

$$||m_1|| \dots ||m_{j-1}|| = 1 \text{ pour } j = 1 \text{ et } ||r_{j+1}|| \dots ||r_n|| = 1 \text{ pour } j = n.$$

3. Montrer la propriété suivante : pour tout $j \in I_n$,

$$\operatorname{per} M = \sum_{i=1}^{n} m_{ij} \operatorname{per} \left(M(i|j) \right). \tag{1}$$

II Formes quadratiques

Dans toute cette partie, Q est une matrice symétrique réelle inversible. On note $\operatorname{sp}(Q) = (\lambda_1, \dots, \lambda_n)$ la suite de ses valeurs propres répétées selon leur multiplicité, $n^+(Q)$ le nombre de termes strictement positifs dans $\operatorname{sp}(Q)$ et $n^-(Q)$ le nombre de termes strictement négatifs dans $\operatorname{sp}(Q)$.

- 4. Soit $H \in \mathcal{V}_0^+$ et $G \in \mathcal{V}^-$, montrer que H et G sont en somme directe et que $r(\Phi_Q) + s(\Phi_Q) \leqslant n$.
- 5. Montrer que $r(\Phi_Q) \geqslant n^+(Q)$. On a alors de même $s(\Phi_Q) \geqslant n^-(Q)$.
- 6. Montrer que $r(\Phi_Q) = n^+(Q)$ et que $s(\Phi_Q) = n^-(Q)$.

Soit R une autre matrice symétrique réelle inversible de taille n telle qu'il existe une constante κ satisfaisant la propriété suivante : pour tout x et y de \mathbf{R}^n ,

$$|B_Q(x,y) - B_R(x,y)| \le \kappa ||x|| \, ||y||.$$

7. Montrer qu'il existe $\delta > 0$ tel que $r(\Phi_Q) = r(\Phi_R)$ si $\kappa \leqslant \delta$.

III Espaces de Lorentz

Définition 3. Soit $Q \in \mathcal{M}_{n,n}(\mathbf{R})$, une matrice symétrique et Φ_Q la forme quadratique associée. On dit que (\mathbf{R}^n, Q) est un espace de Lorentz lorsque les propriétés suivantes sont vérifiées :

- i) Q est inversible,
- *ii*) $r(\Phi_O) = 1$ et $s(\Phi_O) = n 1$.

On suppose dans cette partie que $Q \in \mathcal{M}_{n,n}(\mathbf{R})$ est telle que (\mathbf{R}^n, Q) soit un espace de Lorentz. Soit a un vecteur tel que $\Phi_Q(a) > 0$ et $b \in \mathbf{R}^n$. Soit l'application φ définie par

$$\varphi : \mathbf{R} \longrightarrow \mathbf{R}$$

$$\rho \longmapsto \Phi_{\mathcal{O}}(b + \rho a).$$

8. On suppose, dans cette question, que a et b sont linéairement indépendants. Montrer qu'il existe au moins une valeur de λ telle que

$$\varphi(\lambda) < 0.$$

9. Établir la propriété:

$$B_Q(a, b)^2 \geqslant \Phi_Q(a)\Phi_Q(b), \tag{2}$$

avec égalité si et seulement si a et b sont colinéaires.

On pourra s'inspirer de la preuve de l'inégalité de Cauchy-Schwarz.

IV Inégalité d'Alexandrov

On veut maintenant établir le théorème suivant. On note (e_1, \dots, e_n) la base canonique de \mathbb{R}^n .

Théorème 1. Soit n un entier supérieur à 2. Soit m_1, \dots, m_n des éléments de \mathbb{R}^n à composantes strictement positives. Soit Q la matrice symétrique dont les coefficients sont définis par

$$q_{ij} = per(m_1, m_2, \dots, m_{n-2}, e_i, e_j), i \in I_n, j \in I_n$$

Soit B_Q et Φ_Q les formes bilinéaires et quadratiques associées à Q respectivement. L'espace (\mathbf{R}^n, Q) est un espace de Lorentz.

10. Calculer $r(\Phi_Q)$ et $s(\Phi_Q)$ pour n=2, c'est-à-dire pour

$$Q = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

On suppose le théorème 1 établi pour tout $k \leq n-1$.

11. Établir pour tout j de I_n l'inégalité :

$$\left(\operatorname{per}(m_{1}, \cdots, m_{n-3}, m_{n-2}, c, e_{j})\right)^{2} \geqslant \operatorname{per}(m_{1}, \cdots, m_{n-3}, m_{n-2}, m_{n-2}, e_{j}) \times \operatorname{per}(m_{1}, \cdots, m_{n-3}, c, c, e_{j}), (3)$$

avec égalité si et seulement si c(j) et $m_{n-2}(j)$ sont colinéaires.

Dans les questions 12 et 13, c est un élément de \mathbb{R}^n tel que Qc = 0.

12. Établir l'identité :

$$0 = Qc.c = \sum_{j=1}^{n} m_{j,n-2} \operatorname{per}(m_1, \dots, m_{n-3}, c, c, e_j)$$

13. Montrer que pour tout $j \in I_n$,

$$per(m_1, \dots, m_{n-2}, c, e_j) = 0 \text{ et } per(m_1, \dots, m_{n-2}, m_{n-2}, e_j) > 0.$$

14. En déduire Qc = 0 si et seulement si c = 0.

Soit $e = \sum_{i=1}^{n} e_i$, pour tout θ appartenant à [0, 1], on pose

$$B_{\theta}(x, y) = \text{per}(\theta m_1 + (1 - \theta)e, \dots, \theta m_{n-2} + (1 - \theta)e, x, y).$$

On note Q_{θ} et Φ_{θ} la matrice symétrique et la forme quadratique associées à la forme bilinéaire symétrique B_{θ} .

- 15. Expliciter Q_0 . Montrer que ses valeurs propres sont (n-1)! et -(n-2)! et que $r(\Phi_{Q_0}) = 1$ ainsi que $s(\Phi_{Q_0}) = n-1$.
- 16. Soit θ et θ' deux éléments distincts de [0, 1]. Montrer que, pour tout x et tout y de \mathbf{R}^n ,

$$|B_{\theta}(x, y) - B_{\theta'}(x, y)| \le n \, n! |\theta - \theta'| \, ||x|| \, ||y|| \prod_{j=1}^{n-2} (||m_j|| + \sqrt{n}).$$

17. Établir que $r(\Phi_{Q_1}) = 1$ et $s(\Phi_{Q_1}) = n - 1$.

On pourra raisonner par l'absurde et considérer $\tau = \sup_{\theta \in [0,1]} \{\theta \, / \, r(\Phi_{Q_{\theta}}) = 1\}.$

18. Établir l'inégalité d'Alexandrov qui stipule que pour m_1, \dots, m_{n-1} vecteurs de \mathbf{R}^n à coordonnées strictement positives et b vecteur quelconque de \mathbf{R}^n ,

$$\left(\operatorname{per}(m_1, \dots, m_{n-1}, b)\right)^2 \geqslant \operatorname{per}(m_1, \dots, m_{n-1}, m_{n-1}) \operatorname{per}(m_1, \dots, b, b).$$

FIN DU PROBLÈME