Épreuve: MATHÉMATIQUES I

Filière MP

Dans tout ce problème $C_{2\pi}$ désigne l'espace vectoriel des fonctions continues, 2π -périodiques de \mathbf{R} dans \mathbf{R} muni du produit scalaire défini par :

$$(f|g) = \frac{1}{\pi} \int_0^{2\pi} f(x)g(x) dx$$

dont la norme associée est notée $|| \quad ||_2$. Le choix du facteur $\frac{1}{\pi}$ dans la définition du produit scalaire (contrairement à $\frac{1}{2\pi}$ habituellement) s'impose par la nécessité de rendre les fonctions $c_k: x \mapsto \cos(kx)$ et $s_k: x \mapsto \sin(kx)$ unitaires pour $k \in \mathbf{N}^*$. Les coefficients de Fourier trigonométriques d'une fonction f de $\mathcal{C}_{2\pi}$ sont, comme d'habitude, $a_n(f) = (f|c_n)$ et $b_n(f) = (f|s_n)$ pour $n \in \mathbf{N}^*$ et $a_0(f) = (f|1)$ où 1 est la fonction constante $x \mapsto 1$.

La formule de Parseval pour $f \in \mathcal{C}_{2\pi}$ prend la forme :

$$||f||_2^2 = \frac{a_0(f)^2}{2} + \sum_{n=1}^{\infty} a_n(f)^2 + b_n(f)^2$$

E est le sous-espace de $\mathcal{C}_{2\pi}$ constitué des fonctions impaires et E_2 le sous-espace de E des fonctions de classe \mathcal{C}^2 .

Une valeur propre d'une application linéaire T de E_2 dans E (attention T n'est pas un endomorphisme) est, par définition, un réel λ tel qu'existe un élément f de $E_2 - \{0\}$ vérifiant $T(f) = \lambda f$.

On définit de même la notion de vecteur propre et de sous-espace propre de T.

On fixe une fonction q de classe \mathcal{C}^1 , paire, 2π -périodique et non constante de \mathbf{R} dans \mathbf{R} . On sait, dans ces conditions, que la fonction q est bornée et on pose :

$$a = \inf\{q(x) \mid x \in \mathbf{R}\}, b = \sup\{q(x) \mid x \in \mathbf{R}\} \text{ et } ||q||_{\infty} = \sup\{|q(x)| \mid x \in \mathbf{R}\}.$$

On considère alors les applications linéaires de E_2 dans E définies par :

$$A: y \mapsto -y'' + ay$$
 $B: y \mapsto -y'' + by$ $Q: y \mapsto -y'' + qy$

On pourra utiliser, sans démonstration, le résultat suivant :

- « Soit, pour chaque entier naturel non nul n, $(x_{k,n})_{1 \leq k \leq n}$ une suite de n nombres réels. On suppose :
 - 1. pour tout entier $k \ge 1$, la suite $(x_{k,n})_{n \ge k}$ est convergente et on note :

$$\lim_{n \to \infty} x_{k,n} = x_k;$$

2. il existe une suite $(\xi_k)_{k\geqslant 1}$ de nombres réels positifs telle que la série de terme général ξ_k converge et :

$$\forall k \geqslant 1, \forall n \geqslant k, |x_{k,n}| \leqslant \xi_k.$$

Alors la série de terme général x_k converge absolument et : $\lim_{n\to\infty}\sum_{k=1}^n x_{k,n}=\sum_{k=1}^\infty x_k$ ».

Enfin on dit qu'une famille orthonormale $(e_k)_{k\geqslant 1}$ de vecteurs de E est **totale dans** E si 0 est le seul vecteur de E orthogonal à tous les e_k .

L'objectif du problème est l'étude, par diverses méthodes, des valeurs propres de Q. On peut traiter une question du problème sans avoir résolu les précédentes à condition d'en admettre **clairement** les résultats.

Partie I-Quelques résultats généraux

I.A - Dans cette section I.A, λ désigne un nombre réel fixé et on considère l'équation différentielle d'inconnue y:

$$(E_{\lambda}): \quad y'' + (\lambda - q)y = 0$$

- I.A.1) Énoncer précisément le théorème de Cauchy-Lipschitz adapté à l'équation (E_{λ}) et exploiter l'unicité pour prouver qu'une solution y de (E_{λ}) est impaire si et seulement si y(0) = 0.
- I.A.2) Prouver, par exemple à l'aide du wronskien, que (E_{λ}) ne peut admettre une base de solutions de même parité. En déduire la dimension d'un sous-espace propre de Q.

MATHÉMATIQUES I Filière MP

I.B -

I.B.1) Déterminer les valeurs propres de A et B et, pour chacune d'entre elles, un vecteur propre unitaire associé.

I.B.2) Démontrer, pour tout $f \in E_2$, les inégalités suivantes :

$$(f | A(f)) \leqslant (f | Q(f)) \leqslant (f | B(f)).$$

Partie II-Problème approché de dimension finie

- **II.A** Dans toute la suite du problème on note V_n le sous-espace de E_2 engendré par la famille orthonormale $(s_k)_{1 \leq k \leq n}$ (on posera $V_0 = \{0\}$) et $\Pi_n \in \mathcal{L}(E)$ la projection orthogonale de E sur V_n . Si T est une application linéaire de E_2 dans E et $n \in \mathbb{N}^*$, on conviendra de noter T_n l'endomorphisme de V_n défini par $f \mapsto \Pi_n \circ T(f)$.
- II.A.1) Questions de cours dont les preuves ne sont pas demandées : justifier l'existence de Π_n . Que représente $\Pi_n(f)$ relativement à la série de Fourier de f? Que valent $\lim_{n\to\infty} ||\Pi_n(f)||_2$ et $\lim_{n\to\infty} ||f-\Pi_n(f)||_2$?
- II.A.2) Démontrer, pour tout couple $(f,g) \in E^2$, la relation $(f | \Pi_n(g)) = (\Pi_n(f) | g)$.
- II.A.3) Établir, pour tout couple $(f,g) \in E_2^2$, que (f|Q(g)) = (Q(f)|g). En déduire que Q_n est un endomorphisme symétrique de V_n .
- **II.B** Dans la suite on notera $\lambda_{1,n} \leq \lambda_{2,n} \leq \cdots \leq \lambda_{n,n}$ le système des valeurs propres de Q_n rangées par ordre croissant (chaque valeur propre apparaît donc dans la liste autant de fois que sa multiplicité l'exige) et $(e) = (e_{1,n}, e_{2,n}, \dots, e_{n,n})$ une base orthonormée de V_n telle que, pour chaque indice $k \in \{1, 2, \dots, n\}, e_{k,n}$ est un vecteur propre de Q_n associé à la valeur propre $\lambda_{k,n}$.
- II.B.1) À l'aide de la question I.B.2), démontrer, pour tout $f \in V_n$, les inégalités :

$$(f | A_n(f)) \leqslant (f | Q_n(f)) \leqslant (f | B_n(f)).$$

II.B.2)

- a) Déduire de la question I.B.1 les valeurs propres des endomorphismes A_n et B_n classées par ordre croissant.
- b) Soit $k \in \{1, 2, ..., n\}$; montrer qu'il existe un vecteur unitaire f appartenant à $V_k \cap \operatorname{Vect}(e_{k,n}, e_{k+1,n}, ..., e_{n,n})$ puis que $\lambda_{k,n} \leq (f | Q(f)) \leq (f | B(f)) \leq k^2 + b$. Prouver de manière analogue l'inégalité $k^2 + a \leq \lambda_{k,n}$.
- c) Dans cette question, on suppose $n \ge 2$. Démontrer que, pour tout élément f de V_{n-1} , $(f|Q_n(f)) = (f|Q_{n-1}(f))$. En déduire, en utilisant une méthode analogue à celle suggérée dans la question précédente, que si $1 \le k \le n-1$ alors $\lambda_{k,n-1} \ge \lambda_{k,n}$.

II.C - On pose, dans la suite du problème, $I_k = [k^2 + a, k^2 + b]$. Prouver que, si $k \in \mathbb{N}^*$, la suite $(\lambda_{k,n})_{n \geqslant k}$ converge vers une limite λ_k élément de l'intervalle I_k et que la suite $(\lambda_k)_{k \geqslant 1}$ est croissante.

Partie III- Une suite de valeurs propres de Q

Dans cette partie III seulement on suppose le réel λ strictement positif. On considère les problèmes de Cauchy suivants :

- $(E_{\lambda}): y'' + (\lambda q) y = 0$ d'inconnue y avec les conditions initiales y(0) = 0 et $y'(0) = \sqrt{\lambda}$.
- $(T_{\lambda}): \theta' = \sqrt{\lambda} \frac{q}{\sqrt{\lambda}}\sin^2\theta = \sqrt{\lambda} \frac{q}{2\sqrt{\lambda}}(1 \cos(2\theta))$ d'inconnue θ avec la condition initiale $\theta(0) = 0$.

III.A -

III.A.1) Soit y_{λ} la solution maximale de (E_{λ}) .

Prouver qu'existent deux fonctions r_{λ} et θ_{λ} , de classe \mathcal{C}^1 sur **R** telles que :

$$r_{\lambda} > 0,$$
 $\frac{y_{\lambda}'}{\sqrt{\lambda}} = r_{\lambda} \cos \theta_{\lambda},$ $y_{\lambda} = r_{\lambda} \sin \theta_{\lambda},$ $\theta_{\lambda}(0) = 0.$

III.A.2) Prouver que θ_{λ} est l'unique solution maximale de (T_{λ}) . Dans la suite de cette partie on posera pour tout couple $(\lambda, x) \in]0, +\infty[\times \mathbf{R}]$:

$$\theta(\lambda, x) = \theta_{\lambda}(x).$$

III.A.3) Déterminer une équation différentielle linéaire du premier ordre, dont les coefficients dépendent de la fonction θ , satisfaite par r_{λ} .

III.B - On admet que la fonction $\lambda \mapsto \theta(\lambda, 2\pi)$ est continue sur $]0, +\infty[$.

III.B.1) Prouver, pour tout $t \ge 0$, les inégalités :

$$\left| \theta(\lambda, t) - \sqrt{\lambda} t \right| \leqslant \frac{||q||_{\infty} t}{\sqrt{\lambda}} \quad \text{puis} \quad \left| \cos \left(2\theta(\lambda, t) \right) - \cos \left(2\sqrt{\lambda} t \right) \right| \leqslant \frac{2||q||_{\infty} t}{\sqrt{\lambda}}$$

III.B.2) Prouver l'existence d'une constante K telle que :

$$\left| \theta(\lambda, 2\pi) - 2\pi\sqrt{\lambda} + \frac{1}{2\sqrt{\lambda}} \int_0^{2\pi} q(t) dt - \frac{1}{2\sqrt{\lambda}} \int_0^{2\pi} q(t) \cos\left(2\sqrt{\lambda}t\right) dt \right| \leqslant \frac{K}{\lambda}$$

III.B.3) Montrer que, quand λ est au voisinage de $+\infty$:

$$\theta(\lambda, 2\pi) = 2\pi\sqrt{\lambda} \left[1 - \frac{1}{4\pi\lambda} \int_0^{2\pi} q(t) dt + o\left(\frac{1}{\lambda}\right) \right]$$

MATHÉMATIQUES I Filière MP

III.B.4)

a) Prouver l'existence d'un entier naturel $k_0 > 0$ et d'une suite $(\mu_k)_{k \geqslant k_0}$, strictement croissante de réels strictement positifs telle que, pour tout entier naturel $k \geqslant k_0$, on ait $\theta(\mu_k, 2\pi) = 2k\pi$.

b) Montrer que $\lim_{k\to\infty} (\mu_k - k^2) = \frac{1}{2\pi} \int_0^{2\pi} q(t) dt$.

III.C - Dans cette section III.C on suppose que le réel $\lambda > 0$ vérifie la relation $\theta(\lambda, 2\pi) = 2k\pi$ où $k \in \mathbb{N}^*$ et on se propose de prouver que λ est valeur propre de Q.

III.C.1) Démontrer que pour tout $x \in \mathbf{R}$:

$$\theta(\lambda, -x) = -\theta(\lambda, x)$$
 et $\theta(\lambda, 2\pi + x) - 2k\pi = \theta(\lambda, x)$.

III.C.2) Prouver que si u est une fonction continue, impaire et 2π -périodique alors la fonction $x\mapsto \exp\left[\int_0^x u(t)\,\mathrm{d}t\right]$ est 2π -périodique. En déduire que r_λ est 2π -périodique.

III.C.3) Prouver que y_{λ} est 2π -périodique et impaire et conclure.

III.C.4) Que représentent les réels μ_k définis dans la question III.B.4) pour l'application linéraire Q?

Partie IV - Valeurs propres de Q

On se propose, dans cette partie, d'établir que les λ_k définis dans la partie II sont les valeurs propres de Q associées à un système orthonormal total de vecteurs propres.

IV.A - Dans cette section IV.A on considère une suite réelle $(\alpha_n)_{n\geqslant 1}$ telle que, pour tout $n\geqslant 1$, α_n soit une valeur propre de Q_n . On suppose que la suite $(\alpha_n)_{n\geqslant 1}$ est convergente et on note α sa limite. Pour tout entier $n\geqslant 1$, on note $y_n\in V_n$ un vecteur propre de Q_n associé à la valeur propre α_n On veut prouver que α est une valeur propre de Q.

IV.A.1)

- a) Montrer que, pour tout entier $n \ge 1$, on peut prendre y_n unitaire et tel que $y'_n(0) \ge 0$. Cette condition sera supposée remplie dans la suite de cette partie.
- b) Démontrer que $Q_n(y_n) = -y_n'' + \Pi_n(qy_n)$. En déduire que :

 $||Q(y_n) - \alpha_n y_n||_2 = ||qy_n - \Pi_n(qy_n)||_2$ dont on se propose de prouver la convergence vers 0 quand $n \to \infty$.

c) Établir la relation :

$$qy_n - \Pi_n(qy_n) = \sum_{m=1}^n b_m(y_n) [qs_m - \Pi_n(qs_m)].$$

d) Pour $1 \leq m \leq n$, on pose $r_{m,n} = ||qs_m - \Pi_n(qs_m)||_2$. Établir les inégalités :

$$||Q(y_n) - \alpha_n y_n||_2 \leqslant \sum_{m=1}^n |b_m(y_n)| r_{m,n} \text{ et } r_{m,n} \leqslant ||qs_m||_2 \leqslant ||q||_2.$$

e) Prouver, pour $1 \leq m \leq n$, la relation :

$$m^{2}b_{m}(y_{n}) + b_{m}(qy_{n}) - \alpha_{n}b_{m}(y_{n}) = 0.$$
(1)

f) Prouver, pour $1 \le m \le n$, les inégalités :

 $|b_m(y_n)| \le 1$ et $m^2 |b_m(y_n)| \le [||q||_2 + \sup\{|\alpha_n| / n \in \mathbf{N}^*\}]$ qui sera noté C.

g) Déduire du résultat admis dans le préliminaire que $\lim_{n\to\infty}||Q(y_n)-\alpha_ny_n||_2=0$.

IV.A.2) On note (u, v) la base de solutions de l'équation $y'' + (\alpha - q)y = 0$ telle que :

$$u(0) = 1, \quad u'(0) = 0, \quad v(0) = 0, \quad v'(0) = 1$$

et on pose $z_n = Q(y_n) - \alpha y_n \in E$.

- a) Prouver que $\lim_{n\to\infty} ||z_n||_2 = 0$.
- b) Prouver que le wronskien de (u, v) vaut constamment 1.
- c) En résolvant une équation différentielle, déterminer en fonction de u et v une fonction $K: \mathbb{R}^2 \to \mathbb{R}$, continue et telle que, pour tout $x \in \mathbb{R}$:

$$y_n(x) = y'_n(0) v(x) + \int_0^x K(x,t) z_n(t) dt$$

d) Pour tout entier naturel n, on note f_n la fonction de ${\bf R}$ dans ${\bf R}$ définie par :

$$\forall x \in \mathbb{R}, \quad f_n(x) = \int_0^x K(x, t) z_n(t) dt.$$

Prouver que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ tend uniformément vers 0 sur tout segment de \mathbf{R} .

- e) Prouver que $\lim_{n\to\infty} \sqrt{\int_0^{2\pi} (y_n(x)-y_n'(0)v(x))^2 dx} = 0$. En déduire la limite de la suite $(y_n'(0))_{n\geqslant 1}$.
- f) Établir la convergence uniforme sur tout segment de \mathbf{R} de la suite de fonctions $(y_n)_{n\geqslant 1}$ vers une fonction de norme 1 que l'on déterminera en fonction de v. En déduire que $v\in E$ et que α est une valeur propre de Q.

IV.B - On reprend maintenant les fonctions $(e_{k,n})_{1 \leq k \leq n}$ définies à la section II.B en imposant de surcroît $e'_{k,n}(0) \geq 0$. La section IV.A a établi, pour tout $k \geq 1$, la convergence uniforme sur tout segment de \mathbf{R} de la suite $(e_{k,n})_{n \geq k}$ vers un élément de E unitaire noté e_k qui est un vecteur propre de Q pour la valeur propre λ_k .

IV.B.1) Prouver que la famille $(e_k)_{k\geqslant 1}$ est orthonormale; en déduire que la suite $(\lambda_k)_{k\geqslant 1}$ est strictement croissante.

IV.B.2) Soit $m \in \mathbf{N}^*$ et $n \ge m$

a) Prouver, à l'aide de la relation (1) convenablement adaptée que, pour tout $k \in \mathbf{N}^*$ tel que $k \leq n$ et $k^2 + a > m^2$ on a :

$$|(e_{k,n}|s_m)| \le \frac{||q||_2}{k^2 + a - m^2}.$$

b) Prouver, grâce au préliminaire, que :

$$1 = ||s_m||_2^2 = \sum_{k=1}^{\infty} (e_k |s_m|^2) \text{ puis } \lim_{n \to \infty} ||s_m - \sum_{k=1}^{n} (e_k |s_m|) e_k||_2 = 0$$

IV.B.3) Montrer que la famille $(e_k)_{k\geq 1}$ est totale dans E.

(On pourra calculer $(f|s_m)$ pour un vecteur f orthogonal à tout vecteur e_k).

IV.B.4) Montrer que les valeurs propres de Q sont exactement les éléments de la suite $(\lambda_k)_{k\geqslant 1}$.

(On pourra supposer l'existence d'une valeur propre λ différente des λ_k et calculer $(e|e_k)$ pour un vecteur propre e associé à la valeur propre λ).

Partie V-Comportement asymptotique

 $\mathbf{V.A}$ - On rappelle que q est non constante.

- V.A.1) Prouver que $a < \frac{1}{2\pi} \int_0^{2\pi} q(t) dt < b$.
- $\rm V.A.2)$ On adopte ici les notations de la question $\rm \,\,III.B.4)$ dont on utilisera les résultats.
- a) Démontrer l'existence d'un entier $k_1 \geqslant k_0$ tel que, pour $k \geqslant k_1$ on ait $I_k \cap I_{k+1} = \emptyset$.
- b) Prouver que $\lambda_k = \mu_k$ à partir d'un certain rang. En déduire que

$$\lambda_k = k^2 + \frac{1}{2\pi} \int_0^{2\pi} q(t) dt + o(1)$$

lorsque $k \to \infty$.

• • • FIN • • •