Les calculatrices sont interdites

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction; si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

PARTIE I

Pour tout nombre réel s, on considère l'équation différentielle linéaire homogène du second ordre (\mathcal{E}_s) suivante :

$$(\mathcal{E}_s) \qquad (1-x^2) y''(x) - 2(s+2) xy'(x) - 2(s+1) y(x) = 0.$$

On note f_s la solution de (\mathcal{E}_s) sur]-1,+1[qui vérifie les conditions initiales $f_s(0)=0$ et $f'_s(0)=1$.

- **I.1.** Soit g_s la fonction définie sur]-1,+1[par $g_s(x)=f_s(x)+f_s(-x).$
 - **I.1.1.** Montrer que g_s est solution de (\mathcal{E}_s) sur]-1,+1[.
 - **I.1.2.** Calculer $g_s(0)$ et $g'_s(0)$. En déduire que f_s est impaire.
- **I.2.** Déterminer en fonction de s l'unique valeur de $\alpha \in \mathbb{R}$ telle que la fonction $x \mapsto (1-x^2)^{\alpha}$ soit solution de (\mathcal{E}_s) sur]-1,+1[.
- **I.3.** Soit u_s la fonction définie sur]-1,+1[par $u_s(x)=(1-x^2)^{s+1}f_s(x).$
 - **I.3.1.** Montrer que la dérivée u_s' de u_s est solution sur] -1,+1[de l'équation différentielle :

$$(\mathcal{E}'_s)$$
 $(1-x^2) y'(x) + 2sxy(x) = 0.$

- **I.3.2.** Déterminer l'ensemble des solutions de (\mathcal{E}'_s) sur]-1,+1[.
- **I.3.3.** Calculer $u_s'(0)$ et $u_s(0)$. En déduire que $u_s(x) = \int_0^x (1-t^2)^s dt$ pour tout $x \in]-1,+1[$.
- **I.4.** Soit y une fonction impaire, définie sur un intervalle ouvert I contenant 0, développable en série entière sur I. On note $y(x) = \sum_{n=0}^{+\infty} c_n x^{2n+1}$ le développement en série entière de y sur I.

I.4.1. Montrer que pour que y soit solution de (\mathcal{E}_s) sur I, il faut et il suffit que l'on ait pour tout $n \in \mathbb{N}$:

$$c_{n+1} = \frac{2s + 2n + 3}{2n + 3}c_n.$$

- **I.4.2.** En déduire pour tout $n \in \mathbb{N}^*$ une expression de c_n en fonction de n et c_0 .
- **I.4.3.** Pour quelles valeurs de $s \in \mathbb{R}$ l'équation (\mathcal{E}_s) admet-elle des solutions polynomiales impaires non identiquement nulles ?
 - **I.4.4.** On suppose que $s \notin \{-n \frac{3}{2}; n \in \mathbb{N}\}$, que $y(x) = \sum_{n=0}^{+\infty} c_n x^{2n+1}$ est solution de (\mathcal{E}_s) sur

I, et que $c_0 \neq 0$. Déterminer le rayon de convergence de la série entière $\sum_{n=0}^{+\infty} c_n x^{2n+1}$.

I.5. Déduire des questions précédentes que pour tout $s \in \mathbb{R}$ et tout $x \in]-1,+1[$ on a :

$$f_s(x) = x + \sum_{n=1}^{+\infty} \left[\frac{2^n n!}{(2n+1)!} \prod_{k=1}^n (2s+2k+1) \right] x^{2n+1}.$$

I.6. Montrer que pour tout $p \in \mathbb{N}$ et tout $x \in]-1,+1[$ on a :

$$\int_0^x \frac{dt}{(1-t^2)^{p+\frac{3}{2}}} = \frac{Q_p(x)}{(1-x^2)^{p+\frac{1}{2}}},$$

où Q_p est une fonction polynomiale impaire de degré 2p+1 que l'on explicitera.

Expliciter en particulier
$$\int_0^x \frac{dt}{(1-t^2)^{\frac{3}{2}}}$$
 et $\int_0^x \frac{dt}{(1-t^2)^{\frac{5}{2}}}$.

PARTIE II

On considère la fonction β de la variable réelle x définie par :

$$\beta(x) = \int_0^1 (1 - t^2)^x dt.$$

- II.1. Déterminer le domaine de définition de β .
- **II.2.** Montrer que β est continue sur $]-1,+\infty[$.

On admettra que β est de classe \mathcal{C}^1 sur $]-1,+\infty[$, de dérivée $x\mapsto\beta'(x)=\int_0^1(1-t^2)^x\ln(1-t^2)dt.$

II.3. Montrer que β est strictement monotone sur] $-1, +\infty$ [et préciser son sens de variation.

II.4.

- II.4.1. A l'aide d'une intégration par parties, montrer que l'on a $\beta(x+1) = \frac{2x+2}{2x+3}\beta(x)$ pour tout x > -1.
- II.4.2. Calculer $\beta(0)$. En déduire la limite de $\beta(x)$ lorsque x tend vers -1 par valeurs supérieures.

- II.4.3. Pour tout $n \in \mathbb{N}^*$ donner une expression de $\beta(n)$ à l'aide de factorielles. En utilisant la formule de Stirling, déterminer un équivalent de $\beta(n)$ lorsque n tend vers $+\infty$. En déduire la limite de $\beta(n)$ lorsque n tend vers $+\infty$, puis celle de $\beta(x)$, $x \in \mathbb{R}$, lorsque x tend vers $+\infty$.
 - II.4.4. Calculer $\beta\left(-\frac{1}{2}\right)$. En déduire la valeur de $\beta\left(-\frac{1}{2}+n\right)$ pour tout $n \in \mathbb{N}^*$.

PARTIE III

Soit γ un nombre réel strictement supérieur à 1, non entier. Soit φ_{γ} la fonction 2π -périodique définie sur IR par :

$$\forall x \in \mathbb{R}, \qquad \varphi_{\gamma}(x) = |\cos x|^{\gamma}.$$

On note $a_0(\gamma) + \sum_{n=1}^{+\infty} [a_n(\gamma)\cos nx + b_n(\gamma)\sin nx]$ la série de Fourier de φ_{γ} .

III.1.

- III.1.1. Préciser pourquoi φ_{γ} est égale en tout point de \mathbb{R} à la somme de sa série de Fourier.
- **III.1.2.** Que peut-on dire des coefficients $b_n(\gamma)$, $n \in \mathbb{N}^*$, et $a_{2p+1}(\gamma)$, $p \in \mathbb{N}$?
- III.2. Pour tout $p \in \mathbb{N}$ on considère l'intégrale $I_p = \int_0^{\frac{\pi}{2}} \cos^{\gamma} x \cdot \cos 2px \ dx$.
 - **III.2.1.** Montrer que $I_p I_{p+1} = 2 \int_0^{\frac{\pi}{2}} \cos^{\gamma} x \sin x \cdot \sin(2p+1)x \ dx$.
 - III.2.2. A l'aide d'une intégration par parties, montrer que :

$$I_p - I_{p+1} = 2\frac{2p+1}{\gamma+1} \int_0^{\frac{\pi}{2}} \cos^{\gamma} x \cdot \cos x \cos(2p+1)x \ dx.$$

- **III.2.3.** En déduire que $I_p I_{p+1} = \frac{2p+1}{\gamma+1} [I_p + I_{p+1}].$
- **III.2.4.** Montrer que $I_0 = \beta(\gamma')$, où γ' est un nombre réel strictement positif que l'on calculera en fonction de γ .
 - **III.2.5.** En déduire que pour tout $p \in \mathbb{N}^*$ on a $I_p = \frac{\gamma}{\gamma + 2p} A_p(\gamma) \beta(\gamma')$, où $A_p(\gamma) = \prod_{k=0}^{p-1} \frac{\gamma 2k}{\gamma + 2k}$.
- III.3. Déduire de ce qui précède les valeurs de $a_0(\gamma)$ et de $a_{2p}(\gamma)$ pour tout $p \in \mathbb{N}^*$.

Fin de l'énoncé