Les calculatrices sont interdites

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Notations et objectifs

Pour tout n entier naturel supérieur ou égal à 1, on note $\mathcal{M}_n(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices carrées d'ordre n à coefficients dans \mathbb{R} et $\mathcal{M}_{n,1}(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices colonnes à n lignes à coefficients dans \mathbb{R} .

 $\mathcal{S}_n(\mathbb{R})$ désigne l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$, $\mathcal{O}_n(\mathbb{R})$ l'ensemble des matrices orthogonales de $\mathcal{M}_n(\mathbb{R})$ et I_n la matrice identité d'ordre n.

Tout vecteur $x=(x_i)_{1\leqslant i\leqslant n}$ de \mathbb{R}^n est identifié à un élément X de $\mathcal{M}_{n,1}(\mathbb{R})$ tel que l'élément de la $i^{\text{ème}}$ ligne de X soit x_i . Dans toute la suite, nous noterons indifféremment $X=(x_i)_{1\leqslant i\leqslant n}$ un élément de $\mathcal{M}_{n,1}(\mathbb{R})$ aussi bien que le vecteur de \mathbb{R}^n qui lui est associé.

Selon le contexte, 0 désigne soit le réel nul, soit la matrice nulle de $\mathcal{M}_n(\mathbb{R})$, soit encore la matrice nulle de $\mathcal{M}_{n,1}(\mathbb{R})$.

 \mathbb{R}^n est muni de son produit scalaire canonique noté $(\cdot \mid \cdot)_n$ et de la norme associée notée $||\cdot||_n$. Une matrice carrée réelle M sera dite positive si tous ses coefficients sont positifs ou nuls et on notera dans ce cas $M \geqslant 0$. De même un vecteur X de \mathbb{R}^n sera dit positif si toutes ses composantes x_i sont positives ou nulles et on notera aussi $X \geqslant 0$. L'ensemble des matrices carrées réelles d'ordre n, positives et symétriques est noté $\mathcal{S}_n(\mathbb{R}_+)$.

L'objectif de ce problème est d'étudier des conditions pour lesquelles, étant donnés n nombres réels distincts ou non, $\lambda_1, \lambda_2, \ldots, \lambda_n$, il existe une matrice carrée réelle d'ordre n positive et symétrique admettant pour valeurs propres $\lambda_1, \lambda_2, \ldots, \lambda_n$ comptées avec multiplicité, c'est-à-dire dont le polynôme caractéristique est égal à $\prod (\lambda_k - X)$.

Dans la première partie on considérera quelques exemples simples.

Dans la seconde, on montrera que si S est une matrice carrée réelle positive et symétrique de plus grande valeur propre α , alors α est positif, S admet pour la valeur propre α un vecteur propre positif et toute valeur propre λ de S vérifie $|\lambda| \leq \alpha$.

La troisième partie, assez technique, permettra de connaître les valeurs propres d'une matrice carrée réelle positive et symétrique d'ordre n+p construite à partir de deux matrices A et B carrées réelles positives et symétriques d'ordres respectifs n et p dont on connaît les valeurs propres.

Enfin la dernière partie donnera des conditions suffisantes pour qu'il existe une matrice carrée réelle positive et symétrique d'ordre n admettant pour valeurs propres comptées avec multiplicité, n réels donnés.

PARTIE I

- **I.1** Montrer que si $\lambda_1, \lambda_2, \dots, \lambda_n$ sont des réels positifs, distincts ou non, il existe une matrice S carrée réelle positive et symétrique d'ordre n et de valeurs propres $\lambda_1, \lambda_2, \dots, \lambda_n$, comptées avec multiplicité.
- **I.2** a) Soit M une matrice carrée réelle d'ordre 2 admettant -1 et 1 pour valeurs propres. Montrer que son polynôme caractéristique P est donné par $P(X) = X^2 - 1$.
- b) En déduire une matrice S carrée réelle positive et symétrique d'ordre 2 admettant pour valeurs propres -1 et 1.
- **I.3** Déterminer une matrice S carrée réelle positive et symétrique d'ordre 3 admettant pour valeurs propres -1, 0 et 1.
- **I.4** Déterminer une matrice S carrée réelle positive et symétrique d'ordre 4 admettant pour valeurs propres comptées avec multiplicité : -1, -1, 1 et 1.
- **I.5** Montrer qu'il n'existe aucune matrice S carrée réelle positive et symétrique d'ordre 3 admettant pour valeurs propres comptées avec multiplicité : -1, -1 et 0.
- **I.6** a) Pour a et b réels, on note H la matrice carrée d'ordre n dont les coefficients diagonaux valent tous a et les autres valent tous b. Déterminer les valeurs propres de H.
- b) Une matrice carrée réelle symétrique d'ordre n dont toutes les valeurs propres sont positives ou nulles est-elle nécessairement positive ?

PARTIE II

- **II.1** Soit $(X,Y) \in (\mathcal{M}_{n,1}(\mathbb{R}))^2$, $S \in \mathcal{S}_n(\mathbb{R})$ et $P \in \mathcal{O}_n(\mathbb{R})$. Établir les égalités :
 - **a)** $(X | Y)_n = {}^t XY = {}^t YX.$
 - **b)** ${}^{t}X\dot{S}Y = (X \mid SY)_n = (SX \mid Y)_n.$
 - c) $||PX||_n = ||X||_n$.
- **II.2** Soit $(X,Y) \in (\mathcal{M}_{n,1}(\mathbb{R}))^2$ et $(U,V) \in (\mathcal{M}_{p,1}(\mathbb{R}))^2$. On note Z et T les matrices de $\mathcal{M}_{n+p,1}(\mathbb{R})$ définies par blocs sous la forme

$$Z = \begin{pmatrix} X \\ U \end{pmatrix}$$
 , $T = \begin{pmatrix} Y \\ V \end{pmatrix}$

- **a)** Montrer que $(Z \mid T)_{n+p} = (X \mid Y)_n + (U \mid V)_p$.
- **b)** Montrer que si X, Y sont orthogonaux dans \mathbb{R}^n et U, V orthogonaux dans \mathbb{R}^p , Z et T sont orthogonaux dans \mathbb{R}^{n+p} .
 - c) La réciproque est-elle vraie ?

Dans la suite de cette partie S désigne une matrice de $S_n(\mathbb{R})$ et $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ une matrice diagonale semblable à S. On pose $\alpha = \max_{1 \leq i \leq n} \lambda_i$.

- **II.3 a)** Montrer que pour tout $Y \in \mathcal{M}_{n,1}(\mathbb{R}), (DY \mid Y)_n \leqslant \alpha ||Y||_n^2$. **b)** En déduire que pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}, \frac{(SX \mid X)_n}{||X||_n^2} \leqslant \alpha$.

c) En utilisant une décomposition du vecteur X sur une base orthonormée de vecteurs propres de S, montrer que cette dernière inégalité est une égalité si et seulement si X est vecteur propre de S associé à la valeur propre α .

II.4 Soit
$$E = \{X \in \mathcal{M}_{n,1}(\mathbb{R}) \mid X \ge 0\}, \Sigma = \{X \in \mathcal{M}_{n,1}(\mathbb{R}) \mid ||X||_n = 1\} \text{ et } C = E \cap \Sigma.$$

- a) Montrer que E est un fermé de $\mathcal{M}_{n,1}(\mathbb{R})$.
- **b**) Montrer que C est un fermé borné de $\mathcal{M}_{n,1}(\mathbb{R})$.
- c) Soit $\varphi: \mathcal{M}_{n,1}(\mathbb{R}) \longrightarrow \mathbb{R}$, $X \longmapsto (SX \mid X)_n$. Donner l'expression de $\varphi(X)$ en fonction des coefficients de S et de ceux de X; en déduire que φ est continue sur $\mathcal{M}_{n,1}(\mathbb{R})$.
- d) On pose $\mu = \sup_{X \in C} \varphi(X)$. Justifier l'existence de μ et montrer qu'il existe X_0 appartenant à C tel que $\varphi(X_0) = \mu$.
 - e) Montrer que $\mu \leqslant \alpha$.

II.5 On suppose dans cette question $S \geqslant 0$.

- a) Si $X=(x_i)_{1\leqslant i\leqslant n}$ est un vecteur propre unitaire de S associé à la valeur propre α , on pose $W=(|x_i|)_{1\leqslant i\leqslant n}$.
 - i) Montrer que W est élément de C.
 - ii) Montrer que $|\varphi(X)| \leqslant \varphi(W)$.
 - iii) Montrer que $|\alpha| \leq \mu$.
- **b)** En déduire $\alpha \geqslant 0$, puis que la matrice S admet un vecteur propre positif associé à la valeur propre α .
 - c) Montrer que pour tout $i \in \{1, 2, ..., n\}, |\lambda_i| \leq \alpha$.

PARTIE III

Soit n et p deux éléments de \mathbb{N}^* , A, B deux matrices symétriques réelles d'ordres respectifs n et p, (X_1, X_2, \ldots, X_n) une base orthonormée de \mathbb{R}^n formée de vecteurs propres de A, (Y_1, Y_2, \ldots, Y_p) une base orthonormée de \mathbb{R}^p formée de vecteurs propres de B et $\alpha_1, \alpha_2, \ldots, \alpha_n, \beta_1, \beta_2, \ldots, \beta_p$ les réels tels que :

$$\forall i \in \{1, 2, ..., n\} , AX_i = \alpha_i X_i$$
 et $\forall j \in \{1, 2, ..., p\} , BY_j = \beta_j Y_j$

Pour tout réel s, on note M_s la matrice de $\mathcal{M}_{n+p}(\mathbb{R})$ donnée sous forme de blocs par :

$$M_s = \begin{pmatrix} A & sX_1{}^tY_1 \\ sY_1{}^tX_1 & B \end{pmatrix} \tag{1}$$

et on considère les vecteurs $(Z_i)_{1\leqslant i\leqslant n}$ de \mathbb{R}^{n+p} définis par $Z_i=\binom{X_i}{0}$, ainsi que les vecteurs $(T_j)_{1\leqslant j\leqslant p}$ de \mathbb{R}^{n+p} définis par $T_j=\binom{0}{Y_j}$.

- **III.1** Montrer que Z_2, Z_3, \ldots, Z_n et T_2, T_3, \ldots, T_p sont vecteurs propres de M_s et préciser les valeurs propres correspondantes.
 - **III.2** Pour θ réel, on note $V(\theta)$ le vecteur défini par $V(\theta) = \begin{pmatrix} (\cos \theta) X_1 \\ (\sin \theta) Y_1 \end{pmatrix}$
 - a) Montrer que $V(\theta)$ est unitaire dans \mathbb{R}^{n+p} .
 - **b)** Déterminer le spectre de M_0 .
- c) On suppose dans cette question $s \neq 0$. On note θ_1 l'unique réel de l'intervalle $\left] -\frac{\pi}{2}, +\frac{\pi}{2} \right[$ tel que :

$$\tan \theta_1 = \frac{\beta_1 - \alpha_1 + \sqrt{(\alpha_1 - \beta_1)^2 + 4s^2}}{2s}$$

et on pose $\theta_2 = \theta_1 + \frac{\pi}{2}$.

- i) Montrer que θ_1^{-} est non nul.
- ii) Évaluer le produit $(\tan \theta_1)(\tan \theta_2)$.
- iii) Montrer que θ_1 et θ_2 vérifient l'équation :

$$\alpha_1 + s \tan \theta = \beta_1 + \frac{s}{\tan \theta} \tag{2}$$

- iv) En déduire que $V(\theta_1)$ et $V(\theta_2)$ sont vecteurs propres de M_s et exprimer les valeurs propres correspondantes μ_1 et μ_2 en fonction de α_1 , β_1 et s.
- v) Montrer que les vecteurs $V(\theta_1), V(\theta_2), Z_2, Z_3, \dots, Z_n, T_2, T_3, \dots, T_p$ forment une base orthonormée de \mathbb{R}^{n+p} et donner l'ensemble des valeurs propres de M_s .
- vi) Montrer que les formules exprimant μ_1 et μ_2 en fonction de α_1 , β_1 et s donnent encore des valeurs propres de M_s lorsque s=0.

PARTIE IV

Dans cette partie on se propose de démontrer par récurrence la propriété (P_n) suivante : si $(\lambda_1, \lambda_2, \dots, \lambda_n)$ est un élément de \mathbb{R}^n tel que :

$$\lambda_1 \geqslant 0 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n$$
 et $\lambda_1 + \lambda_2 + \cdots + \lambda_n \geqslant 0$

alors il existe $A \in \mathcal{S}_n(\mathbb{R}_+)$ tel que $\lambda_1, \lambda_2, \dots, \lambda_n$ soient les valeurs propres de A comptées avec multiplicité.

IV.1 Vérifier que (P_1) est vraie.

IV.2 Soit $n \in \mathbb{N}^*$ tel que (P_n) soit vraie et soit $(\lambda_1, \lambda_2, \dots, \lambda_n, \lambda_{n+1}) \in \mathbb{R}^{n+1}$ vérifiant :

$$\lambda_1 \geqslant 0 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n \geqslant \lambda_{n+1}$$
 et $\lambda_1 + \lambda_2 + \cdots + \lambda_n + \lambda_{n+1} \geqslant 0$

On pose $a = \lambda_1 + \lambda_{n+1}$.

- a) Montrer qu'il existe $A \in \mathcal{S}_n(\mathbb{R}_+)$ tel que $a, \lambda_2, \ldots, \lambda_n$ soient valeurs propres de A. Dans la suite de cette question **IV.2**, A désignera une telle matrice.
 - **b**) Montrer que A admet un vecteur propre X_1 unitaire et positif associé à la valeur propre a.
 - c) Pour s réel, soit M_s la matrice de $\mathcal{M}_{n+1}(\mathbb{R})$ définie par :

$$M_s = \begin{pmatrix} A & sX_1 \\ s \, {}^t X_1 & 0 \end{pmatrix}$$

- i) Vérifier que M_s est bien de la forme (1) : préciser p, B et Y_1 .
- ii) En déduire les valeurs propres de M_s .
- iii) Montrer que si $s = \sqrt{-\lambda_1 \lambda_{n+1}}$, les valeurs propres de M_s sont : $\lambda_1, \lambda_2, \dots, \lambda_n, \lambda_{n+1}$ et conclure.

IV.3 Exemple

- a) Déterminer le spectre de la matrice $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 3 & 0 \end{pmatrix}$
- b) Déterminer une matrice B carrée réelle positive et symétrique d'ordre 4, admettant pour valeurs propres $\lambda_1 = 9$, $\lambda_2 = -1$, $\lambda_3 = \lambda_4 = -3$.

Fin de l'énoncé