Épreuve: MATHÉMATIQUES II

Filière PSI

La représentation plane de figures tridimensionnelles suppose le choix d'une application p de \mathbb{R}^3 dans \mathbb{R}^2 , grâce à laquelle une figure $\mathscr{F} \subset \mathbb{R}^3$ devient, dans \mathbb{R}^2 , le $croquis: p(\mathscr{F})$. Ici, on fait le choix d'une application p linéaire, connue sous le nom de perspective cavalière. Toutefois, pour la commodité des calculs, on a préféré faire jouer aux vecteurs de la base canonique $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ de \mathbb{R}^3 des rôles différents de ceux qu'ils ont d'habitude dans ce type de perspective.

Dans tout le problème, les espaces \mathbb{R}^2 et \mathbb{R}^3 sont munis de leur structure euclidienne canonique orientée et pourront être considérés comme des espaces vectoriels réels de vecteurs-colonnes, ou des espaces affines réels de vecteurs-colonnes. Aussi bien pour ce qui concerne \mathbb{R}^2 que \mathbb{R}^3 , le produit scalaire canonique sera noté <, > et la norme euclidienne canonique sera notée $\|\cdot\|$.

On donne deux réels strictement positifs α et β et on considère l'application, notée p ,

de \mathbb{R}^3 dans \mathbb{R}^2 qui au vecteur-colonne $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ associe $\begin{pmatrix} x - \alpha z \\ y - \beta z \end{pmatrix}$. Si \mathscr{P} est une partie

de \mathbb{R}^3 , on dira qu'elle est représentée en vraie grandeur par p si, quels que soient M et M' dans \mathscr{P} , on a $\|\overrightarrow{p(M)p(M')}\| = \|\overrightarrow{MM'}\|$.

Partie I-Généralités

I.A -

I.A.1) Montrer que p est une application linéaire. Déterminer la matrice de p relativement aux bases canoniques de \mathbb{R}^3 et \mathbb{R}^2 .

Déterminer le noyau et l'image de p.

Pour toute la suite du problème, on désigne par $\overrightarrow{\nu}$ le vecteur $\begin{pmatrix} \alpha \\ \beta \\ 1 \end{pmatrix}$ de \mathbb{R}^3 .

I.A.2) Représenter sur un même dessin les images par p des vecteurs de la base canonique de \mathbb{R}^3 .

Ce dessin donne une représentation en perspective de la base formée par ces trois vecteurs.

I.B - Interprétation géométrique de p

Pour cette seule question, on introduit l'endomorphisme \bar{p} de \mathbb{R}^3 qui au vecteur-

colonne
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 associe $\begin{pmatrix} x - \alpha z \\ y - \beta z \\ 0 \end{pmatrix}$.

Interpréter géométriquement p grâce à \overline{p} (on pourra former $\overline{p} \circ \overline{p}$).

Est-il vrai que $||p(X)|| \leq ||X||$ pour tout vecteur $X \in \mathbb{R}^3$?

I.C -

I.C.1) Soit M_0 un point et \overrightarrow{u} un vecteur de \mathbb{R}^3 .

On considère la droite affine $D = M_0 + \mathbb{R} \overrightarrow{u} = \{M_0 + \lambda \overrightarrow{u}\}.$

Montrer que $p(D) = p(M_0) + \mathbb{R} p(\overrightarrow{u})$.

I.C.2) Soit D une droite affine de \mathbb{R}^3 . Montrer que son image par p est une droite affine ou est réduite à un point, en discutant selon un vecteur directeur de D.

I.C.3) Soit D et D' deux droites affines de \mathbb{R}^3 dont les images par p sont des droites affines de \mathbb{R}^2 .

a) Si D et D' sont sécantes, montrer que leurs images par p le sont aussi. La réciproque est-elle vraie?

b) Si D et D' sont parallèles, montrer que leurs images par p le sont aussi. La réciproque est-elle vraie?

I.C.4) Soit Π un plan affine de \mathbb{R}^3 . Discuter la nature de $p(\Pi)$ suivant $\overrightarrow{\nu}$ et Π .

I.D - Une propriété métrique de p

Soit un vecteur $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$; on pose $q(X) = ||X||^2 - ||p(X)||^2$.

I.D.1) Montrer que l'ensemble des $X \in \mathbb{R}^3$ tels que q(X) = 0 est la réunion de deux plans Π_1 et Π_2 que l'on caractérisera par leurs équations cartésiennes.

En déduire que les plans affines parallèles à l'un ou l'autre de ces deux plans sont représentés en vraie grandeur par p.

I.D.2)

a) Montrer, en le déterminant, qu'il existe un unique endomorphisme autoadjoint u

MATHÉMATIQUES II Filière PSI

de \mathbb{R}^3 , tel que $q(X) = \langle u(X), X \rangle$ pour tout $X \in \mathbb{R}^3$.

b) Déterminer le polynôme caractéristique χ_u de u puis le signe des valeurs propres non nulles de u.

I.E - Une généralisation

- Soit P un plan vectoriel de \mathbb{R}^3 ; montrer qu'il existe une base orthonormale \mathscr{B} de \mathbb{R}^3 dont les deux premiers vecteurs soient dans P.
- I.E.2) Soit u' un endomorphisme autoadjoint de \mathbb{R}^3 ; on pose $q'(X) = \langle u'(X), X \rangle$ pour tout $X \in \mathbb{R}^3$, on suppose qu'il existe P, plan vectoriel de \mathbb{R}^3 , tel que q'(X) = 0pour tout $X \in P$ et. P étant supposé choisi, on choisit \mathcal{B} comme dans la question I.E.1. Montrer que la matrice de u' relativement à \mathscr{B} est de la forme

$$M = \begin{pmatrix} 0 & 0 & a \\ 0 & 0 & b \\ a & b & c \end{pmatrix}.$$

- I.E.3) Si $(a, b) \neq (0, 0)$, montrer que l'ensemble des $X \in \mathbb{R}^3$ tels que q'(X) = 0 est la réunion de deux plans puis étudier le signe des valeurs propres non nulles de u'.
- I.E.4) Discuter le rang de u' en fonction de (a, b, c).

Dans les parties II et III, on se limite au cas où $\alpha = \cos \theta$ et $\beta = \sin \theta$ pour un $\theta \in \left]0, \frac{\pi}{2}\right[$ supposé choisi et, R>0 étant donné, on considère la sphère S d'équation cartésienne $x^2 + y^2 + z^2 = R^2$.

Partie II-L'image d'une sphère

Le but de cette partie est d'étudier l'image p(S) de S par p.

II.A - Une inéquation définissant le domaine p(S)

II.A.1) Soit $\xi = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$. Montrer que l'image réciproque $p^{-1}(\{\xi\})$ est la droite affine D_{ξ} passant par le point $\begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ et de vecteur directeur $\overrightarrow{\nu}$. En conclure que

$$\xi \in p(S) \iff S \cap D_{\xi} \neq \emptyset$$

et que cela équivaut à dire que l'équation en t

$$(x + t\cos\theta)^2 + (y + t\sin\theta)^2 + t^2 - R^2 = 0$$

admet au moins une racine réelle.

II.A.2) En déduire que p(S) est définie par l'inéquation $\Phi(x, y) \leq 2R^2$, où l'on a posé

$$\Phi(x, y) = 2(x^2 + y^2) - (x\cos\theta + y\sin\theta)^2.$$

On désigne par \mathscr{E} la partie de \mathbb{R}^2 d'équation $\Phi(x, y) - 2R^2 = 0$.

- II.A.3) On considère le repère affine \mathscr{R}' déduit du repère canonique \mathscr{R} de \mathbb{R}^2 par la rotation d'angle θ autour de l'origine.
- a) Soit M un point de \mathbb{R}^2 de coordonnées (x,y) dans \mathscr{R} et de coordonnées (x',y')dans \mathscr{R}' .

Déterminer x' et y' en fonction de x et y.

- b) Montrer que \mathscr{E} est une ellipse et donner son équation cartésienne dans \mathscr{R}' .
- c) Indiquer les éléments remarquables de $\mathscr E$: axe focal, demi-longueur des axes et excentricité. Montrer que les foyers de $\mathscr E$ sont les points F et F' dont les coordonnées relatives à \mathcal{R}' sont respectivement $\begin{pmatrix} R \\ 0 \end{pmatrix}$ et $\begin{pmatrix} -R \\ 0 \end{pmatrix}$.
- d) Déterminer une inéquation de p(S) dans le repère \mathcal{R}' et en déduire que p(S) est le domaine borné limité par \mathscr{E} .

Représenter enfin p(S) soigneusement dans le repère \mathcal{R}' .

II.B - Étude du contour apparent de S

II.B.1) Montrer, en le déterminant, que tout élément $\xi \in \mathcal{E}$ ne possède qu'un seul antécédent par p dans S.

Indication: On pourra déterminer $t_0 \in \mathbb{R}$ tel que $\pi(\xi) = \xi + t_0 \overrightarrow{\nu}$.

Cet antécédent sera noté $\pi(\xi)$ et on désignera par Σ l'ensemble des $\pi(\xi)$, lorsque ξ décrit &.

- II.B.2) Pour chaque $\xi = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathcal{E}$, calculer $\langle \pi(\xi), \overrightarrow{\nu} \rangle$ et en déduire que Σ est inclus dans P_0 , le plan vectoriel orthogonal à $\overrightarrow{\nu}$.
- II.B.3) Réciproquement, soit $X \in S$ tel que $\langle \overrightarrow{\nu}, X \rangle = 0$. Montrer que $p(X) \in \mathscr{E}$. **Indication:** On pourra calculer $\Phi(p(X))$ ou s'aider d'un dessin.

Conclure quant à la nature de Σ . La représentation de Σ par p est-elle en vraie grandeur? Quelle conclusion peut-on en tirer en terme de représentation cavalière d'une sphère?

II.C - De certaines symétries vectorielles laissant stable $\mathscr E$

II.C.1) Montrer que la restriction p_0 de p à P_0 est une bijection de P_0 sur \mathbb{R}^2 .

On en notera p_1 la bijection réciproque.

Soit σ une application linéaire de P_0 sur lui-même, supposée involutive, c'est-à-dire vérifiant $\sigma \circ \sigma = \mathrm{Id}_{P_0}$.

MATHÉMATIQUES II Filière PSI

- a) Montrer que $s = p_0 \circ \sigma \circ p_1$ est une involution linéaire de \mathbb{R}^2 sur lui-même.
- b) Comment obtient-on les sous-espaces propres de s en fonction de ceux de σ ?
- c) Montrer que s laisse stable $\mathscr E$ si, et seulement si, σ laisse stable Σ .

Partie III-Balayage de p(S) par des cercles

III.A - Question préliminaire

On suppose donné un intervalle ouvert I non vide et un arc Γ de classe C^1 de I dans \mathbb{R}^3 . On suppose que, pour un $t_0 \in I$, le vecteur-dérivée $\Gamma'(t_0)$ n'appartient pas à $\operatorname{Vect}(\overrightarrow{\nu})$. Dans ces conditions, montrer que le point $p(\Gamma(t_0))$ est régulier pour l'arc $p \circ \Gamma$, de I dans \mathbb{R}^2 , et donner un vecteur directeur de la tangente à l'arc en ce point.

III.B -

III.B.1) Soit un réel $\delta \in [-\pi/2; \pi/2]$; montrer que l'intersection de S et du plan de \mathbb{R}^3 d'équation $z = R \sin \delta$ est le cercle C_δ paramétré par

$$\varphi \in \mathbb{R} \longmapsto M_{\delta}(\varphi) = \begin{pmatrix} R\cos\delta\cos\varphi \\ R\cos\delta\sin\varphi \\ R\sin\delta \end{pmatrix}$$

En donner le centre et le rayon.

III.B.2) Montrer que l'intersection de P_0 et de C_δ est non vide si, et seulement si, $|\delta| \leqslant \frac{\pi}{4}$. Montrer plus précisément que cette intersection se compose alors de deux points lorsque $|\delta| < \frac{\pi}{4}$.

III.B.3) Soit $\delta \in [-\pi/4; \pi/4]$ et un point $M \in P_0 \cap C_\delta$. On choisit un réel φ_0 tel que $M = M_\delta(\varphi_0)$. Montrer que $M \in \Sigma$ puis que sont orthogonaux à \overrightarrow{OM} : le vecteur $\overrightarrow{\nu}$, le vecteur $\left[\frac{\mathrm{d}M_\delta}{\mathrm{d}\varphi}\right]_{\varphi=\varphi_0}$ ainsi que tout vecteur tangent en M à Σ .

III.B.4) Montrer que les $p(C_{\delta})$, où δ décrit $[-\pi/2; \pi/2]$, sont des cercles et que p(S) en est la réunion.

Déterminer le centre Ω_{δ} et le rayon R_{δ} du cercle $p(C_{\delta})$.

En utilisant en particulier III.A et III.B.3, montrer que, lorsque $|\delta| < \frac{\pi}{4}$, le cercle $p(C_{\delta})$ est tangent à \mathscr{E} en deux points distincts. Étudier aussi le cas de $p(C_{\pi/4})$.

III.B.5) Lorsque $0 \le \delta < \delta' \le \frac{\pi}{4}$, montrer que $p(C_{\delta'})$ et $p(C_{\delta})$ sont sécants. Lorsque $\frac{\pi}{4} \le \delta < \delta' \le \frac{\pi}{2}$, montrer que $p(C_{\delta'})$ est intérieur à $p(C_{\delta})$.

III.C - La récompense finale

Représenter sur un même dessin : \mathscr{E} , un cercle $p(C_{\delta})$ avec $0 \leq \delta < \frac{\pi}{4}$, le cercle $p(C_{\pi/4})$ et un cercle $p(C_{\delta})$ avec $\frac{\pi}{2} > \delta > \frac{\pi}{4}$.

III.D -

Montrer qu'il existe une seconde famille de cercles inclus dans S dont les images par p soient des cercles et dont la réunion des images par p soit encore p(S).

• • • FIN • • •