Les calculatrices sont interdites

N.B.: Le candidat attachera la plus grande importance à la clarté, la précision et à la concision de la rédaction; si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Dans tout l'énoncé de ce problème, I désigne un intervalle ouvert de IR symétrique par rapport à l'origine, et φ une fonction paire, de classe \mathcal{C}^{∞} sur I.

Toutes les fonctions considérées dans ce problème prennent leurs valeurs dans IR.

On note (E) l'équation différentielle linéaire homogène du second ordre en la fonction inconnue y de la variable réelle x suivante :

(E)
$$y''(x) + \varphi(x)y(x) = 0.$$

On note f_0 l'unique solution de (E) sur I vérifiant les conditions initiales $f_0(0) = 1$ et $f_0'(0) = 0$, et f_1 l'unique solution de (E) sur I vérifiant les conditions initiales $f_1(0) = 0$ et $f'_1(0) = 1$.

PARTIE I

- **I.1.** Montrer que si y est une solution de (E) sur I, alors y est de classe \mathcal{C}^{∞} sur I.
- **I.2.** Montrer que si y est une solution de (E) sur I, alors la fonction $x \mapsto y(-x)$ est aussi solution de(E) sur I.
- **I.3.** Montrer que f_0 est une fonction paire et f_1 une fonction impaire.

Exprimer la solution générale de (E) sur I à l'aide de f_0 et f_1 .

Déterminer parmi les solutions de (E) sur I celles qui sont paires et celles qui sont impaires.

- **I.4.** On suppose que f_0 ne s'annule pas sur I, et l'on pose $u = \frac{f_1}{f_0}$. **I.4.1.** Montrer que u' ne s'annule pas sur I, et exprimer $\frac{u''}{u'}$ en fonction de $\frac{f'_0}{f_0}$.
 - **I.4.2.** En déduire qu'il existe une constante réelle B, que l'on calculera, telle que $u' = \frac{B}{f_c^2}$.
 - **I.4.3.** On note u_0 la primitive de $\frac{1}{f_0^2}$ qui s'annule en x=0. Exprimer f_1 à l'aide de f_0 et u_0 .

- **I.5.** Dans cette question, on suppose que $I = \left] -\frac{\pi}{2}, +\frac{\pi}{2} \right[$ et que la fonction $x \mapsto \cos^2 x$ est solution de (E) sur I.
 - **I.5.1.** Déterminer $\varphi(x)$ et $f_0(x)$ pour tout $x \in I$.
 - **I.5.2.** Déterminer $u_0(x)$ pour tout $x \in I$. On pourra utiliser l'identité :

$$\frac{1}{\cos^4 x} = \frac{1 + \tan^2 x}{\cos^2 x}.$$

et exprimer $u_0(x)$ comme fonction de $\tan x$.

I.5.3. En déduire la valeur de $f_1(x)$ pour tout $x \in I$ et expliciter la solution générale de (E) sur I.

PARTIE II

Dans cette partie on suppose que $I=\mathbb{R}$ et qu'en plus des conditions imposées au début de l'énoncé, φ est 2π -périodique.

On s'intéresse aux éventuelles solutions 2π -périodiques de l'équation (E).

II.1. Soit y une solution de (E) sur \mathbb{R} .

Montrer que la fonction $x \mapsto y(x+2\pi)$ est solution de (E) sur \mathbb{R} .

II.2. En déduire qu'il existe des constantes réelles w_{00} , w_{01} , w_{10} , w_{11} , que l'on déterminera en fonction des valeurs prises par f_0 , f'_0 , f_1 , f'_1 en 2π , telles que pour tout $x \in \mathbb{R}$ on ait :

$$f_0(x+2\pi) = w_{00}f_0(x) + w_{10}f_1(x),$$

$$f_1(x+2\pi) = w_{01}f_0(x) + w_{11}f_1(x).$$

II.3. Soit W la matrice carrée d'ordre 2 définie par $W = \begin{pmatrix} w_{00} & w_{01} \\ w_{10} & w_{11} \end{pmatrix}$.

Montrer que pour que (E) admette sur IR des solutions non identiquement nulles 2π -périodiques, il faut et il suffit que W admette 1 pour valeur propre. On pourra exprimer une telle solution g en fonction de f_0 et f_1 puis utiliser la périodicité de g.

- II.4. Montrer que si (E) admet sur IR des solutions non identiquement nulles 2π -périodiques, alors l'une au moins des deux fonctions f_0 et f_1 est 2π -périodique. On pourra, g étant une telle solution, considérer les fonctions $x \mapsto g(x) + g(-x)$ et $x \mapsto g(x) g(-x)$.
- II.5. On suppose dans cette question que la fonction φ est définie par :

$$\forall x \in \mathbb{R}, \qquad \varphi(x) = a - k^2 \sin^2 x,$$

où a et k sont des constantes réelles choisies de telle sorte que la solution f_0 sur ${\rm I\!R}$ de l'équation :

(E)
$$y''(x) + (a - k^2 \sin^2 x)y(x) = 0$$

soit 2π -périodique (on ne cherchera pas à démontrer l'existence de telles constantes a et k).

Soit F la fonction définie pour tout $x \in \mathbb{R}$ par $F(x) = \int_{-\pi}^{+\pi} e^{k \cos t \cos x} f_0(t) dt$.

On note K la fonction définie pour tout $(x,t) \in \mathbb{R}^2$ par $K(x,t) = e^{k \cos t \cos x}$.

II.5.1. Montrer que F est de classe C^2 sur \mathbb{R} et paire.

II.5.2. Vérifier que pour tout couple $(x,t) \in \mathbb{R}^2$ on a :

$$\frac{\partial^2 K}{\partial x^2}(x,t) + (a-k^2\sin^2 x)K(x,t) = \frac{\partial^2 K}{\partial t^2}(x,t) + (a-k^2\sin^2 t)K(x,t).$$

En déduire que pour tout $x \in \mathbb{R}$ on a :

$$F''(x) + (a - k^2 \sin^2 x) F(x) = \int_{-\pi}^{+\pi} \frac{\partial^2 K}{\partial t^2}(x, t) f_0(t) dt + \int_{-\pi}^{+\pi} (a - k^2 \sin^2 t) K(x, t) f_0(t) dt,$$

puis, au moyen d'une double intégration par parties, que F est solution de (E) sur \mathbb{R} .

II.5.3. Déduire de ce qui précède qu'il existe une constante réelle λ telle que pour tout $x \in \mathbb{R}$ on ait :

$$\int_{-\pi}^{+\pi} e^{k\cos t \cos x} f_0(t) dt = \lambda f_0(x).$$

PARTIE III

Dans cette partie, on suppose que $I = \left] -\frac{\pi}{2}, +\frac{\pi}{2} \right[$ et que φ est une fonction constante sur I, égale à ω^2 , avec $\omega > 0$.

- III.1. Déterminer dans ce cas la solution générale de l'équation (E) sur I, ainsi que ses solutions f_0 et f_1 .
- **III.2.** Soit z une fonction de classe C^{∞} sur]-1,+1[. Montrer que la fonction y définie pour tout $x \in I$ par $y(x) = z(\sin x)$ est solution de (E) sur I si et seulement si z est solution sur]-1,+1[de l'équation différentielle :

$$(E') (1 - X^2)z''(X) - Xz'(X) + \omega^2 z(X) = 0.$$

- III.3. Soit z une solution de (E') sur]-1,+1[, admettant sur]-1,+1[un développement en série entière $z(X)=\sum_{n=0}^{+\infty}a_nX^n.$
- **III.3.1.** Déterminer une relation de récurrence reliant a_{n+2} à a_n pour tout $n \in \mathbb{N}$. En déduire pour tout $p \in \mathbb{N}^*$ les expressions de a_{2p} en fonction de p, ω et a_0 , et de a_{2p+1} en fonction de p, ω et a_1 .

Pour quelles valeurs de ω l'équation (E') admet-elle des solutions polynomiales non identiquement nulles ?

Montrer que quelles que soient les valeurs de a_0 , a_1 et ω , le rayon de convergence de la série entière $\sum_{n=0}^{+\infty} a_n X^n$ est supérieur ou égal à 1.

III.3.2. On note z_0 la solution de (E') développable en série entière sur]-1, +1[correspondant au choix $a_0 = 1$, $a_1 = 0$, et z_1 la solution de (E') développable en série entière sur]-1, +1[correspondant au choix $a_0 = 0$, $a_1 = 1$.

Donner une expression, sur I, des fonctions $x \mapsto \cos \omega x$ et $x \mapsto \sin \omega x$ à l'aide des fonctions z_0, z_1 et sin.

III.3.3. Soit
$$m$$
 un nombre entier strictement positif.
Exprimer $\cos 2mx$ et $\sin(2m+1)x$, pour tout $x \in \left] -\frac{\pi}{2}, +\frac{\pi}{2} \right[$, sous la forme :

$$\cos 2mx = P_m(\sin x), \qquad \sin(2m+1)x = Q_m(\sin x),$$

où P_m est une fonction polynomiale de degré 2m et Q_m une fonction polynomiale de degré 2m+1. Ces expressions sont-elles valides sur IR tout entier?

Fin de l'énoncé