Notations et définitions

 \mathbb{R}^2 est muni de la norme $||(x,y)|| = \sqrt{x^2 + y^2}$.

On note $\mathcal{C}(\mathbb{R}^+, \mathbb{R})$ l'ensemble des fonctions continues de \mathbb{R}^+ dans \mathbb{R} et L^1 l'ensemble des fonctions $f \in \mathcal{C}(\mathbb{R}^+, \mathbb{R})$ intégrables sur \mathbb{R}^+ . Si $f \in L^1$, on pose $||f||_1 = \int_0^{+\infty} |f|$.

On note B l'ensemble des fonctions $f \in \mathcal{C}(\mathbb{R}^+, \mathbb{R})$ bornées sur \mathbb{R}^+ . Si $f \in B$, on pose $||f||_{\infty} = \sup_{\mathbb{R}^+} |f|$.

Si $\alpha \in [1, +\infty[$, on convient que $0^{\alpha} = 0$; ainsi $t \in \mathbb{R}^+ \mapsto t^{\alpha}$ est continue.

On pose, lorsque cela a un sens, $I(\alpha) = \int_0^{+\infty} \frac{1}{1 + t^{\alpha}} dt$.

Si $\alpha \in [1, +\infty[$ et h est une fonction continue de \mathbb{R}^+ dans \mathbb{R} , on note $E_{\alpha,h}$ l'équation différentielle linéaire :

$$(E_{\alpha,h}) : y'' - \frac{1}{1+t^{\alpha}}y' + y = h$$

Par définition, une solution de $(E_{\alpha,h})$ est une fonction de \mathbb{R}^+ dans \mathbb{R} de la variable t de classe \mathcal{C}^2 vérifiant $(E_{\alpha,h})$.

Pour une équation différentielle linéaire du second ordre (E), de second membre h, on définit les propriétés de stabilité suivantes :

- on dira que (E) est stable par rapport aux conditions initiales si et seulement si pour tout $\varepsilon \in \mathbb{R}_+^*$, il existe $\eta \in \mathbb{R}_+^*$ tel que si f est une solution de (E) vérifiant $\|(f(0), f'(0))\| \leq \eta$, alors $f \in B$ et $\|f\|_{\infty} \leq \varepsilon$.
- on dira que (E) est stable par rapport au second membre au sens 1 si et seulement si pour tout $\varepsilon \in \mathbb{R}_+^*$, il existe $\eta \in \mathbb{R}_+^*$ tel que si $h \in L^1$ est tel que $\|h\|_1 \leqslant \eta$ et f est solution de (E) vérifiant (f(0), f'(0)) = (0, 0), alors $f \in B$ et $\|f\|_{\infty} \leqslant \varepsilon$.
- on dira que (E) est **stable par rapport au second membre au sens** ∞ si et seulement si pour tout $\varepsilon \in \mathbb{R}_+^*$, il existe $\eta \in \mathbb{R}_+^*$ tel que si $h \in B$ est tel que $\|h\|_{\infty} \leqslant \eta$ et f est solution de (E) vérifiant (f(0), f'(0)) = (0, 0), alors $f \in B$ et $\|f\|_{\infty} \leqslant \varepsilon$.

De plus, dans le cas de l'équation $(E_{\alpha,0})$:

• on dira que $(E_{\alpha,0})$ est **stable par rapport au paramètre** si et seulement si pour tous $(a,b) \in \mathbb{R}^2$ et $\varepsilon \in \mathbb{R}_+^*$, il existe $\eta \in \mathbb{R}_+^*$ tel que : si $\beta \in [1,+\infty[$ vérifie $|\alpha-\beta| \leq \eta, f$ est solution de $(E_{\alpha,0})$ et g est solution de $(E_{\beta,0})$ avec (f(0),f'(0)) = (g(0),g'(0)) = (a,b), alors $f-g \in B$ et $||f-g||_{\infty} \leq \varepsilon$.

Objectifs et dépendance des parties

L'objectif du problème est d'étudier le comportement des solutions de $(E_{\alpha,0})$ vers $+\infty$, ainsi que les différentes notions de stabilité.

La partie I étudie le cas de l'équation « limite à l'infini » y'' + y = h.

La partie II, indépendante de I, étudie le comportement à l'infini des solutions de $(E_{\alpha,0})$ pour $\alpha > 1$.

La partie III, qui étudie les problèmes de stabilité pour $\alpha > 1$, utilise des résultats de II.A, II.C et I.5.

La partie **IV**, qui étudie le comportement à l'infini des solutions de $(E_{1,0})$, utilise **II.B**.

La partie V, qui étudie les problèmes de stabilité pour $\alpha=1$, utilise les parties IV et II.

Partie I - Étude de l'équation y'' + y = h

Si $h \in \mathcal{C}(\mathbb{R}^+, \mathbb{R})$, on note (F_h) l'équation différentielle y'' + y = h. Par définition, une solution de (F_h) est une fonction de classe \mathcal{C}^2 de \mathbb{R}^+ dans \mathbb{R} vérifiant (F_h) .

I.A -

- I.A.1) Donner l'ensemble des solutions de (F_0) .
- I.A.2) Dans cette question uniquement, on prend pour $h: x \mapsto \cos(x)$.

Donner l'ensemble des solutions de (F_h) dans ce cas.

I.A.3) Dans cette question uniquement, on prend pour h la fonction 2π -périodique sur \mathbb{R}^+ , définie par

$$h(x) = \begin{cases} \sin(x) & \text{si} \quad x \in [0, \pi] \\ 0 & \text{si} \quad x \in [\pi, 2\pi] \end{cases}$$

Démontrer que h est continue sur \mathbb{R}^+ et déterminer l'ensemble des solutions de (F_h) .

I.B - Stabilité par rapport aux conditions initiales

Si $(a,b) \in \mathbb{R}^2$, et f est la solution de (F_0) vérifiant (f(0),f'(0)) = (a,b), montrer que $f \in B$ et $||f||_{\infty} \leq ||(a,b)||$.

I.C - Si $h \in \mathcal{C}(\mathbb{R}^+, \mathbb{R})$, montrer que $f_0 : t \in \mathbb{R}^+ \mapsto \left(\int_0^t h(u) \sin(t-u) du \right)$ est solution de (F_h) , et en déduire l'ensemble des solutions de (F_h) .

${\bf I.D}$ - Stabilité par rapport au second membre au sens 1

On donne $h \in L^1$.

Déterminer la solution f de (F_h) vérifiant (f(0), f'(0)) = (0, 0), montrer que $f \in B$, et $||f||_{\infty} \leq \sqrt{2}||h||_{1}$.

En déduire que (F_h) est stable par rapport au second membre au sens 1.

I.E - Instabilité par rapport au second membre au sens ∞

Soit $\delta \in \mathbb{R}_{+}^{*}$.

Résoudre l'équation différentielle $y'' + y = \delta \cos(t)$, et montrer que ses solutions sont non bornées, et plus précisement, ne sont pas en o(t) quand $t \to +\infty$.

En déduire la non stabilité de (F_0) par rapport au second membre au sens ∞ .

Partie II - Comportement à l'infini des solutions de $(E_{lpha,0})$ pour lpha>1

II.A - Démontrer l'existence de $I(\alpha)$, pour $\alpha > 1$, et sa continuité par rapport à α .

II.B - Relèvement angulaire

On donne $g: \mathbb{R}^+ \to \mathbb{C}^*$ de classe \mathcal{C}^k , $k \geqslant 2$.

II.B.1) Justifier l'existence d'une primitive A de $\frac{g'}{g}$, et montrer que ge^{-A} est constante.

II.B.2) En écrivant la fonction A sous la forme A = B + iC, où B et C sont des fonctions à valeurs réelles, justifier qu'existent $r \in \mathcal{C}^k(\mathbb{R}^+, \mathbb{R}^*_+)$ et $\theta \in \mathcal{C}^k(\mathbb{R}^+, \mathbb{R})$ tels que $g = re^{i\theta}$.

II.C - Comportement à l'infini pour $\alpha > 1$

Soit $\alpha > 1$ et f une solution non nulle de $(E_{\alpha,0})$. On note $q: t \in \mathbb{R}^+ \mapsto \frac{1}{1+t^{\alpha}}$.

II.C.1) En appliquant II.B, montrer qu'existent $r \in \mathcal{C}^1(\mathbb{R}^+, \mathbb{R}^*_+)$ et $\theta \in \mathcal{C}^1(\mathbb{R}^+, \mathbb{R})$ telles que $f = r\cos(\theta)$ et $f' = r\sin(\theta)$.

Exprimer r en fonction de f et f'.

Les fonctions r et θ sont fixées ainsi pour la suite de la partie.

II.C.2) Démontrer que
$$\theta' = -1 + q\sin(\theta)\cos(\theta)$$
. (1)

II.C.3) Démontrer que
$$r' = qr \sin^2(\theta)$$
. (2)

Démontrer que r a une limite strictement positive en $+\infty$ vérifiant II.C.4 $\lim r \leqslant r(0) \exp(I(\alpha)).$

Démontrer que f et f' sont bornées par $\|(f(0), f'(0))\| \exp(I(\alpha))$.

- Démontrer que $\theta(t) + t$ tend vers une limite réelle quand $t \to +\infty$.
- Démontrer qu'existent $a \in \mathbb{R}_+^*$ et $b \in \mathbb{R}$ tels que $f(t) a\cos(t+b) \xrightarrow[t \to +\infty]{} 0$. II.C.6)
- Tracer l'allure du graphe de f vers $+\infty$. II.C.7)

Partie III - Étude de la stabilité pour $\alpha > 1$

Dans toute la partie, $\alpha > 1$, et (f_1, f_2) est un système fondamental de solutions de

 $w = \begin{vmatrix} f_1 & f_2 \\ f'_1 & f'_2 \end{vmatrix}$ est le wronskien associé. On pensera à utiliser les résultats de II.

III.A - Stabilité par rapport aux conditions initiales

Démontrer que $(E_{\alpha,0})$ est stable par rapport aux conditions initiales.

III.B - Stabilité par rapport au second membre au sens 1

III.B.1) Déterminer une équation différentielle vérifiée par w, et montrer qu'existent a, b réels tels que pour tout $x \in \mathbb{R}^+$, $0 < a \leq |w(x)| \leq b$.

III.B.2) Si $h \in \mathcal{C}(\mathbb{R}^+, \mathbb{R})$, montrer que les solutions de $(E_{\alpha,h})$ sont les fonctions du type $f=-C_1f_1+C_2f_2$, où C_1 est une primitive de $\frac{hf_2}{w}$ et C_2 une primitive de $\frac{hf_1}{w}$. III.B.3) Quelles sont les conditions nécessaires et suffisantes requises sur C_1 et C_2 dans la question précédente pour avoir (f(0), f'(0)) = (0, 0)?

III.B.4) Démontrer l'existence de $C \in \mathbb{R}^+$ telle que : pour tout $h \in L^1$, la solution f de $(E_{\alpha,h})$ vérifiant (f(0), f'(0)) = (0,0) est dans B, et $||f||_{\infty} \leq C||h||_{1}$. En déduire que $(E_{\alpha,0})$ est stable par rapport au second membre au sens 1.

III.C - Instabilité par rapport au second membre au sens ∞

On fixe $\lambda \in \mathbb{R}^*_{\perp}$.

Soit g une solution de $y'' + y = \lambda \cos(t)$.

Soit f la solution sur \mathbb{R}^+ de $y''-\frac{1}{1+t^\alpha}y'+y=\lambda\cos(t)$ telle que (f(0),f'(0))=(0,0). On pose $\Phi=f-g.$

III.C.1) Démontrer que Φ est solution de $(E_{\alpha,h})$, pour une fonction $h \in \mathcal{C}(\mathbb{R}^+, \mathbb{R})$ vérifiant $h(t) \underset{t \to +\infty}{\longrightarrow} 0$.

- III.C.2) Démontrer que $h(t) \xrightarrow[t \to +\infty]{} 0$ implique que $\int_0^t |h| = o(t)$.
- III.C.3) Utilisant la résolution de $(E_{\alpha,h})$ vue en III.B, montrer que $\Phi(t) = o(t)$.

III.C.4) Démontrer que $(E_{\alpha,0})$ n'est pas stable par rapport au second membre au sens ∞ .

III.D - Stabilité par rapport au paramètre

On fixe pour la suite de la question $(a, b) \in \mathbb{R}^2$.

Soit $\beta \in]1, +\infty[$.

Soit f la solution de $(E_{\alpha,0})$ vérifiant (f(0), f'(0)) = (a, b), g la solution de $(E_{\beta,0})$ vérifiant (g(0), g'(0)) = (a, b).

On pose $\Phi = f - g$.

Si
$$\lambda > 1$$
, on pose $J(\lambda) = \int_0^1 \frac{1}{1+t^{\lambda}} dt$ et $K(\lambda) = \int_1^{+\infty} \frac{1}{1+t^{\lambda}} dt$.

Comme pour I, les fonctions J et K sont bien définies et continues sur $]1, +\infty[$ (on ne demande pas de le montrer).

III.D.1) Démontrer que Φ est une solution de l'équation différentielle $(E_{\alpha,h})$ avec

$$h: t \mapsto \left(\frac{1}{1+t^{\beta}} - \frac{1}{1+t^{\alpha}}\right) g'(t)$$

III.D.2) Démontrer que $h \in L^1$ et

$$||h||_1 \leqslant ||(a,b)|| e^{I(\beta)} \Big(|J(\alpha) - J(\beta)| + |K(\alpha) - K(\beta)| \Big).$$

III.D.3) Démontrer que $(E_{\alpha,0})$ est stable par rapport au paramètre.

Partie IV - Étude du comportement vers $+\infty$ pour $\alpha=1$

f est une solution non nulle de $(E_{1,0})$.

On pose
$$g: t \in \mathbb{R}^+ \mapsto \frac{f(t)}{\sqrt{t+1}}$$

IV.A - Établir que pour tout
$$t\geqslant 0,$$
 $g''(t)+\left(1-\frac{3}{4(t+1)^2}\right)g(t)=0.$

IV.B - Démontrer qu'existent
$$\rho \in \mathcal{C}^2(\mathbb{R}^+, \mathbb{R}_+^*)$$
 et $\beta \in \mathcal{C}^2(\mathbb{R}^+, \mathbb{R})$ telles que $g = \rho \cos(\beta)$ et $g' = \rho \sin(\beta)$.

IV.C - Déterminer une équation différentielle vérifiée par β et montrer que $\beta(x) + x$ tend vers une limite réelle lorsque $x \to +\infty$.

IV.D - Déterminer une équation différentielle vérifiée par ρ , et démontrer que ρ tend vers une limite réelle a>0 en $+\infty$.

IV.E - Démontrer qu'il existe un réel b tel que $f(t) - a\sqrt{t}\cos(t+b) = o(\sqrt{t})$, où a est le réel défini ci-dessus.

IV.F - Tracer l'allure du graphe de f vers $+\infty$.

Partie V - Étude de la stabilité pour $\alpha=1$

V.A - Démontrer que $(E_{1,0})$ n'est pas stable par rapport aux conditions initiales et au paramètre.

V.B - Si
$$\lambda \in \mathbb{R}$$
, et $f_{\lambda} : x \mapsto \lambda x \sin(x)$, calculer $f_{\lambda}''(x) - \frac{1}{1+x} f_{\lambda}'(x) + f_{\lambda}(x)$.

Qu'en déduire concernant la stabilité de $(E_{1,0})$ par rapport au second membre au sens ∞ ?

 $\bullet \bullet \bullet \text{FIN} \bullet \bullet \bullet$