Notations. Dans tout le problème, on ne considère que des matrices carrées réelles. On désigne par ${\bf E}$ l'espace vectoriel réel des matrices carrées (réelles) d'ordre 2, c'està-dire à 2 lignes et 2 colonnes. Si $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in {\bf E}$, on rappelle la définition de sa trace ${\rm Tr}(M)=a+d$ et de son polynôme caractéristique

$$\chi_M : x \in \mathbb{R} \longmapsto \det(x\mathbb{I}_2 - M),$$

où \mathbb{I}_2 désigne la matrice identité et det le déterminant d'ordre 2. En outre, on identifie les espaces vectoriels réels \mathbb{R}^2 et $\mathfrak{M}_{2,1}(\mathbb{R})$ et on munit \mathbb{R}^2 de son produit scalaire canonique et de la norme euclidienne associée.

On pose donc, pour
$$X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2, \; \|X\| = \sqrt{x_1^2 + x_2^2}.$$

On rappelle enfin qu'une matrice carrée réelle A d'ordre 2 est orthogonale si, et seulement si, ${}^t\!A\,A = \mathbb{I}_2$. L'ensemble des matrices orthogonales réelles d'ordre 2 est noté O_2 .

On désigne par S_2 l'espace vectoriel des matrices symétriques réelles d'ordre 2.

Partie I - Généralités

I.A -

- I.A.1) Démontrer que si deux matrices de **E** sont semblables, elles ont même trace et même polynôme caractéristique. La réciproque est-elle vraie? Justifier la réponse.
- I.A.2) Démontrer que $\Phi: (M_1, M_2) \longmapsto \operatorname{Tr}({}^tM_1 M_2)$ définit un produit scalaire sur **E**. Pour la suite du problème, **E** pourra être muni de la norme associée à ce produit scalaire.
- I.A.3) Démontrer que, pour toute matrice $M \in \mathbf{E}$, on a $|\det(M)| \leq \frac{1}{2} \operatorname{Tr}({}^t M M)$. Quand y a-t-il égalité?

I.A.4) Pour $M \in \mathbf{E}$ et $x \in \mathbb{R}$, exprimer $\chi_M(x)$ en fonction de x, Tr(M) et det(M). En conclure que 1 est une valeur propre de M si, et seulement si, $\operatorname{Tr}(M) = 1 + \det(M).$

I.B - La décomposition UDV

On donne dans cette question $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ élément de \mathbf{E} , avec $(a,b,c,d) \in \mathbb{R}^4$. I.B.1) Si $\theta \in \mathbb{R}$, on pose $P(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ et $\varphi(\theta) = \text{Tr}(MP(\theta))$.

I.B.1) Si
$$\theta \in \mathbb{R}$$
, on pose $P(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ et $\varphi(\theta) = \text{Tr}(MP(\theta))$

Démontrer que φ est une application bornée de $\mathbb R$ dans $\mathbb R$ et qu'il existe $\theta_1 \in \mathbb R$ en lequel φ atteint son maximum. En choisissant alors un tel θ_1 et en considérant $\varphi'(\theta_1)$, démontrer que $MP(\theta_1)$ est une matrice symétrique.

I.B.2) En déduire que $M \in \mathbf{E}$ peut se mettre sous la forme $P(t_1)DP(t_2)$, où $(t_1, t_2) \in \mathbb{R}^2$ et où D est une matrice diagonale de \mathbf{E} .

Remarque : on a établi que toute matrice $M \in \mathbf{E}$ peut se mettre sous la forme M = UDV, où D est diagonale et U, V orthogonales.

I.B.3) **Exemple :** décomposer la matrice $M_0 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ sous la forme $P(t_1)DP(t_2)$, où $(t_1, t_2) \in \mathbb{R}^2$.

I.C - Soit $A \in \mathbb{E}$, U et V des matrices orthogonales d'ordre 2 et B = UAV. Démontrer que ${}^{t}AA$ et ${}^{t}BB$ sont semblables.

On ne demande pas de démontrer le résultat suivant, qui est admis : toute matrice $M \in \mathbf{E}$ peut se mettre sous la forme $P(t_1)DP(t_2)$, où $(t_1, t_2) \in \mathbb{R}^2$ et où $D = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \in \mathbf{E} \text{ v\'erifie en outre } \alpha \leqslant \beta \text{ et } \beta \geqslant 0.$

Partie II - Les ensembles \mathcal{R} et \mathcal{S}

On désigne par \mathscr{R} l'ensemble des matrices $M \in \mathbf{E}$ telles que $||MX|| \leq ||X||$ pour tout vecteur-colonne $X \in \mathbb{R}^2$.

II.A - Reformuler la définition de $\mathcal R$ en utilisant la notion de norme subordonnée.

II.B -

II.B.1) Si $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{R},$ démontrer que $(a,\,b,\,c,\,d)$ appartient $[-1,1]^4.$

Démontrer que $\mathcal R$ est un compact de $\mathbf E.$

 $Si(M_1, M_2) \in \mathbf{E}^2$, on définit le segment $[M_1M_2]$ comme l'ensemble des matrices de la forme $(1-t)M_1 + tM_2$, où t décrit [0,1].

II.B.2) Démontrer que \mathcal{R} est aussi un *convexe* de \mathbf{E} , c'est-à-dire que, si M_1 et M_2 sont deux matrices de \mathcal{R} , le segment $[M_1M_2]$ est inclus dans \mathcal{R} .

II.C -

II.C.1) Démontrer que $M \in \mathcal{R} \iff \forall X \in \mathbb{R}^2$, ${}^tX {}^tM MX \leqslant {}^tX X$.

II.C.2)

a) Si $M \in \mathbf{E}$, justifier le fait que le polynôme caractéristique de ${}^t\!M$ M est de la forme $(x - \lambda_1)(x - \lambda_2)$, avec λ_1 et λ_2 réels.

Démontrer ensuite que ces réels sont positifs ou nuls.

On pourra considérer des expressions de la forme ^tX ^tM MX.

- b) Démontrer que $M \in \mathcal{R}$ si, et seulement si, les valeurs propres de ${}^t\!M\,M$ appartiennent à [0,1].
- $\mathbf{II.D}$ Déduire en particulier de $\mathbf{II.C.2.a}$ que

$$M \in \mathcal{R} \iff \left\{ \begin{array}{ll} \operatorname{Tr}({}^t\!M\,M) & \leqslant & 1 + (\det(M))^2 \\ \operatorname{Tr}({}^t\!M\,M) & \leqslant & 2 \end{array} \right.$$

II.E - On définit $\mathscr S$ comme :

$$\mathscr{S} = \{ M \in \mathscr{R} \mid \exists X_0 \in \mathbb{R}^2, \ X_0 \neq 0, \ ||MX_0|| = ||X_0|| \}.$$

- II.E.1) En reprenant les calculs de **II.C.2.a**, démontrer que M appartient à $\mathscr S$ si, et seulement si, le polynôme caractéristique de ${}^t\!M$ M est de la forme $(x-\lambda)(x-1)$, où $\lambda \in [0,1]$.
- II.E.2) Si $M \in \mathbf{E}$, on l'écrit sous la forme $M = P(t_1)DP(t_2)$, où $(t_1, t_2) \in \mathbb{R}^2$ et où $D = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ avec $\alpha \leqslant \beta$ et $\beta \geqslant 0$.
- a) Déterminer les valeurs propres de tMM en fonction de α et β .
- b) Démontrer que $M\in \mathscr{S}$ si, et seulement si, il existe U et V, matrices orthogonales d'ordre 2 et $\gamma\in [-1,1]$ tels que $M=U\begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix}V$.
- II.E.3) En déduire que, si M est une matrice non orthogonale de \mathscr{S} , il existe des matrices orthogonales W et W' d'ordre 2 telles que M appartienne au segment [WW'].

On pourra montrer d'abord que si M est de la forme $\begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix}$, avec $\gamma \in]-1,1[$, on peut choisir W et W' orthogonales et diagonales telles que M appartienne au segment [WW'].

- **II.F** On désigne par \mathbf{E}_1 l'ensemble des matrices de la forme $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, avec $(a,b) \in \mathbb{R}^2$ et par \mathbf{E}_2 l'ensemble des matrices de la forme $\begin{pmatrix} c & d \\ d & -c \end{pmatrix}$, avec $(c,d) \in \mathbb{R}^2$.
- II.F.1) Démontrer que \mathbf{E}_1 et \mathbf{E}_2 sont deux sous-espaces vectoriels supplémentaires de \mathbf{E} orthogonaux au sens du produit scalaire Φ défini en $\mathbf{I.A.2.}$
- II.F.2) Démontrer que \mathbf{E}_1 contient toutes les matrices orthogonales d'ordre 2 et de déterminant +1 et que \mathbf{E}_2 contient toutes les matrices orthogonales d'ordre 2 et de déterminant -1.
- II.F.3) Lorsque M est une matrice non orthogonale de \mathscr{S} , déduire de ce qui précède le nombre de segments [WW'] où W et W' sont orthogonales contenant M.

Partie III - Définition de l'ensemble ${\mathscr H}$

III.A -

III.A.1) Si $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, démontrer que que $M\in \mathscr{S}$ implique $a^2+b^2+c^2+d^2=1+(ad-bc)^2$

On désigne par \mathcal{H} l'ensemble des matrices $M \in \mathbf{E}$ vérifiant cette dernière relation.

III.A.2)

- a) Réciproquement, à quelle condition, vérifiée par son déterminant, une matrice $M \in \mathcal{H}$ appartient-elle à $\mathcal S$?
- b) Démontrer qu'une matrice $M\in \mathscr{H}$ appartient à \mathscr{S} si et seulement si $\operatorname{Tr}({}^t\!M\,M)\ \leqslant\ 2.$

III.B -

III.B.1) Si $(A, B) \in \mathbf{E}_1 \times \mathbf{E}_2$, calculer $\det(A + B)$ en fonction de $\det(A)$ et de $\det(B)$.

Si $(M_1, M_2) \in \mathbf{E}^2$, avec $M_1 \neq M_2$ on définit la *droite affine* (M_1M_2) comme l'ensemble des matrices de la forme $(1-t)M_1 + tM_2$, où t décrit \mathbb{R} . Dans la suite, on l'appellera *droite* (M_1M_2) .

III.B.2) Démontrer que, si W et W' sont des matrices orthogonales éléments de \mathbf{E} , telles que $\det(W) = +1$ et $\det(W') = -1$, la droite (WW') est incluse dans \mathscr{H} . Réciproquement, \mathscr{H} est-elle réunion de droites de cette forme?

Partie IV - Représentation graphique de ${\mathscr H}$

IV.A - Si $M \in \mathbf{E}$, on rappelle que le polynôme caractéristique de tMM est de la forme $(x - \lambda_1)(x - \lambda_2)$, avec $(\lambda_1, \lambda_2) \in \mathbb{R}^2$, $\lambda_1 \ge 0$ et $\lambda_2 \ge 0$. Pour fixer les idées, on suppose $0 \le \lambda_1 \le \lambda_2$.

On suppose $M \neq 0$. Déterminer en fonction de λ_1 et λ_2 le nombre de réels t positifs tels que $tM \in \mathcal{H}$. On en trouvera « en général » deux, et on interprétera les cas particuliers.

On étudie à partir de cette question l'intersection de $\mathcal H$ avec certains sous-espaces vectoriels de E. On commence par des exemples de plans vectoriels.

 $\mathbf{IV.B - Soit } \ \mathbf{P}_1 \ \text{l'ensemble des matrices de la forme } \mathscr{M}_1(x,\,y) = \begin{pmatrix} \frac{x}{\sqrt{2}} & y \\ 0 & \frac{x}{\sqrt{2}} \end{pmatrix}.$

IV.B.1) Déterminer les matrices orthogonales qui sont dans \mathbf{P}_1 .

IV.B.2) Dans cette question, on identifie $\mathcal{M}_1(x,y)$ avec le point (x,y) de \mathbb{R}^2 muni de son produit scalaire canonique et de son repère orthonormal canonique. On procédera à des identifications analogues dans les questions suivantes.

- a) Démontrer que $\mathcal{H} \cap \mathbf{P}_1$ est la réunion de deux coniques \mathcal{C}_1 et \mathcal{C}_2 . Déterminer $\mathcal{C}_1 \cap \mathcal{C}_2$.
- b) Représenter par un dessin $\mathcal{H} \cap \mathbf{P}_1$ et $\mathcal{S} \cap \mathbf{P}_1$ dans le plan \mathbf{P}_1 .

IV.C - Soit \mathbf{P}_2 l'ensemble des matrices de la forme $\mathscr{M}_2(x, y) = \begin{pmatrix} \frac{x}{\sqrt{2}} & \frac{x}{\sqrt{2}} \\ 0 & y \end{pmatrix}$. Soit

 $(u, v) \in \mathbb{R}^2$; on ne demande pas de vérifier que la relation du **III.A.1** implique $\mathcal{M}_2(x, y) \in \mathcal{H} \cap \mathbf{P}_2 \iff x^2y^2 - 2(x^2 + y^2 - 1) = 0$

Étudier et représenter par un dessin $\mathcal{H} \cap \mathbf{P}_2$ et $\mathcal{S} \cap \mathbf{P}_2$ dans le plan \mathbf{P}_2 (on pourra discuter et résoudre l'équation par rapport à la variable y).

IV.D - Exemple d'intersection de \mathcal{H} avec un sous-espace de dimension 3 On désigne par S_2 l'espace vectoriel des matrices symétriques réelles d'ordre 2.

IV.D.1) Démontrer qu'une matrice $M \in \mathbf{S}_2$ appartient à \mathcal{H} si, et seulement si, elle admet une valeur propre égale à +1 ou à -1.

On admet qu'une base orthonormale de \mathbf{S}_2 est $\mathcal{B} = (M_1, M_2, M_3)$, avec

$$M_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ M_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ M_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

IV.D.2) En écrivant une matrice de \mathbf{S}_2 sous la forme $xM_1 + yM_2 + zM_3$, décrire l'ensemble C_a des matrices de \mathbf{S}_2 admettant le réel donné a comme valeur propre. En déduire une description de $\mathscr{H} \cap \mathbf{S}_2$.

IV.D.3) Soit $\theta \in \mathbb{R}$ et $N = P(\theta)M(x, y, z)P(\theta)^{-1}$; démontrer que c'est une matrice de la forme M(u, v, w) et exprimer (u, v, w) en fonction de (x, y, z). Interpréter certains des résultats de la question **IV.D.2**.

IV.D.4) Représenter par un dessin $\mathcal{H} \cap \mathbf{S}_2$ et $\mathcal{S} \cap \mathbf{S}_2$.

