MATHÉMATIQUES I

Notations et objectifs du problème

• On rappelle qu'une ellipse d'un plan affine euclidien, de demi-axes a et b (a > b > 0), notée $(E_{a,\,b})$ admet, dans un certain repère orthonormé, une représentation paramétrique de la forme :

$$\begin{cases} x = a \cos t \\ y = b \sin t \end{cases} \tag{1}$$

(t décrit un segment de longueur 2π).

• $\mathscr{C}_{2\pi}$ désigne le C- espace vectoriel des fonctions continues sur IR, 2π - périodiques, à valeurs complexes. On munit cet espace du produit scalaire défini par :

$$(f|g) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \overline{f(t)} g(t) dt.$$

• Pour $k \in \mathbb{Z}$, $n \in \mathbb{N}$ et $f \in \mathscr{C}_{2\pi}$ on rappelle les expressions des coefficients de Fourier exponentiels et trigonométriques de f, utiles dans le problème :

$$c_k(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-kit}dt$$
, $a_n(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)\cos(nt)dt$.

• Dans tout le problème r désignera un nombre réel appartenant à l'intervalle ouvert]0,1[et f_r l'élément de $\mathcal{E}_{2\pi}$ défini par : $t\mapsto |1-re^{it}|$

On désignera aussi par \mathscr{S}_r l'ensemble des suites réelles $(a_n)_{n\geq 0}$ vérifiant, pour tout entier naturel non nul n, la relation :

$$r(2n+3)a_{n+1} - (1+r^2)2na_n + r(2n-3)a_{n-1} = 0$$

et \mathcal{B}_r le sous-ensemble de \mathcal{S}_r constitué des suites (a_n) telles que le rayon de convergence de la série entière de terme général $a_n z^n$ soit au moins égal à 1.

• Dans tout le problème $(\alpha_n)_{n\geq 0}$ sera la suite réelle définie par :

$$\alpha_n = \frac{-\binom{2n}{n}}{4^n(2n-1)}$$
 pour tout $n \in \mathbb{N}$.

(Les candidats qui le préfèrent pour ront aussi noter \mathbb{C}^n_{2n} le coefficient binomial).

La partie entière du réel x est notée [x].

Filière MP

- L'attention des candidats est attirée sur le fait que la notation \sqrt{z} ne sera prise en considération que lorsque z est un nombre réel positif.
- L'objectif du problème est l'étude de quelques problèmes asymptotiques relatifs à la longueur, notée L(a,b), de l'ellipse $(E_{a,b})$.

Partie I - Préliminaires

- **I.A -** Préciser sur un dessin la signification géométrique du paramètre t intervenant dans le paramétrage (1).
- **I.B** Prouver rapidement que \mathscr{S}_r et \mathscr{B}_r sont des R- espaces vectoriels et préciser la dimension de \mathscr{S}_r .
- **I.C** Donner sans démonstration l'énoncé précis du théorème de Parseval relatif à un élément $f \in \mathcal{C}_{2\pi}$ (les coefficients de Fourier intervenant dans la formule seront les coefficients exponentiels).

Si f et g sont deux éléments de $\mathscr{C}_{2\pi}$, prouver, en justifiant d'abord la convergence absolue de la série, la formule :

$$(f|g) = \overline{c_0(f)}c_0(g) + \sum_{n=1}^{\infty} (\overline{c_n(f)}c_n(g) + \overline{c_{-n}(f)}c_{-n}(g)).$$

- **I.D** Soit n un entier naturel. Exprimer $a_n(f_r)$ à l'aide de $c_n(f_r)$.
- **I.E** Soient a et b deux réels vérifiant a > b > 0. On pose $r = \frac{a-b}{a+b}$.

Exprimer, en fonction de a , b et de constantes, le réel $\frac{L(a,b)}{a_0(f_r)}$.

Partie II - .Comportement asymptotique de la suite $(a_n(f_r))$

- **II.A** Déterminer le rayon de convergence R de la série entière de terme général $\alpha_n z^n$. On notera f(z) sa somme dans le disque ouvert complexe de centre 0 et de rayon R.
- **II.B** Soit x un réel appartenant à l'intervalle ouvert]-R, R[. Donner une relation entre (1-x)f'(x) et f(x). En déduire une expression simple de la restriction de f à l'intervalle ouvert]-R, R[.

II.C - On choisit maintenant un complexe z tel que |z| < R. Déterminer une expression très simple de $f(z)^2$.

- **II.D** Prouver, pour $r \in]0,1[$ et $t \in \mathbb{R}$, la relation : $\left|f(re^{it})\right|^2 = f_r(t)$.
- **II.E** Soit n un entier naturel. En utilisant la question I.C et la précédente, prouver l'égalité :

$$\frac{c_n(f_r)}{\alpha_n r^n} = \int_0^{+\infty} \alpha_{[x]} \frac{\alpha_{n+[x]}}{\alpha_n} r^{2[x]} dx.$$

En déduire la limite de cette suite quand l'entier n tend vers l'infini.

II.F - Prouver que, quand $n \to \infty$:

$$a_n(f_r) \sim \frac{\sqrt{1-r^2}r^n}{\sqrt{\pi n^{3/2}}}$$
.

En quoi ce résultat corrobore-t-il votre cours sur les séries de Fourier?

Partie III - Approximation de L(a, b)

III.A - Déterminer une équation différentielle linéaire du premier ordre satisfaite par f_r . En déduire que la suite $(a_n(f_r))$ appartient à \mathcal{B}_r .

III.B - Pour tout réel $r \in$]0,1[, on définit deux suites $(A_n(r))_{n \ge 0}$ et $(B_n(r))_{n \ge 0}$ par :

$$A_0(r) = 1$$
 , $B_0(r) = 0$, $A_1(r) = -\frac{2}{r}(1+r^2)$, $B_1(r) = 1$

et les relations de récurrence, valables pour $n \ge 2$:

$$A_n(r) = \frac{2n(1+r^2)}{r(2n-3)}A_{n-1}(r) - \left(\frac{2n+1}{2n-5}\right)A_{n-2}(r)$$

$$B_n(r) = \frac{2n(1+r^2)}{r(2n-3)}B_{n-1}(r) - \left(\frac{2n+1}{2n-5}\right)B_{n-2}(r)$$

on définit également, pour $n \ge 1$, la matrice $M_n(r)$ par :

$$M_n(r) = \left(\begin{array}{ccc} A_n(r) & -\frac{2n+3}{2n-3}A_{n-1}(r) \\ \\ B_n(r) & -\frac{2n+3}{2n-3}B_{n-1}(r) \end{array} \right).$$

Pour alléger la rédaction, les candidats pourront remplacer, chaque fois que cela leur paraîtra utile, les expressions $A_n(r)$, $B_n(r)$, $M_n(r)$, par A_n , B_n , M_n .

Pour $n \ge 1$, déterminer une matrice T_n , dont les coefficients dépendent de n et r, telle que pour toute suite $(a_n)_{n\geq 0}$ appartenant à \mathscr{S}_r on ait :

$$\left(\begin{array}{c} a_{n-1} \\ a_n \end{array}\right) = T_n \left(\begin{array}{c} a_n \\ a_{n+1} \end{array}\right).$$

Écrire, dans le langage de calcul formel de votre choix, des fonctions prenant en argument l'entier n et retournant a_n , A_n , B_n ; a_0 , a_1 et r seront considérés comme des variables globales. Montrer que, pour tout entier $n \ge 1$, on a: $M_n = M_{n-1}T_n.$

En déduire le produit matriciel $M_n \begin{pmatrix} a_n \\ a_{n+1} \end{pmatrix}$ indépendamment de n

III.C - Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle qu'existent une suite (ε_n) tendant vers 0, un réel l, un réel $k \in]0,1[$ et un entier N vérifiant :

$$\forall n>N, \, \left|u_n-l\right| \leq k \left|u_{n-1}-l\right| + \varepsilon_n$$

Montrer que $\lim_{n\to\infty} u_n = l$.

III.D - Prouver que

$$\lim_{n \to \infty} A_n a_n(f_r) = \frac{a_0(f_r)}{1 - r^2}$$

Que dire de la suite de terme général $B_n a_n(f_r)$ lorsque n tend vers l'infini?

III.E - Soient a et b deux réels tels que a > b > 0. On pose $r = \frac{a-b}{a+b}$.

À l'aide des questions II.E et III.D, démontrer que la suite (l_n) définie par :

$$\begin{cases} l_0 = (a+b)\pi(1-r^2)^{3/2} \\ l_1 = l_0(1+r^2) & \text{converge vers } L(a,b) \,. \\ l_n = (1+r^2)l_{n-1} - \frac{r^2(2n+1)(2n-3)}{4n(n-1)}l_{n-2} \end{cases}$$

Partie IV - Étude de \mathcal{S}_r et de \mathcal{B}_r

IV.A - Soit $(a_n)_{n\geq 0}$ un élément de \mathscr{S}_r . Prouver l'égalité : $a_1A_n-a_0B_n=a_{n+1}$ det M_n

IV.B - Calculer det T_n puis det M_n . Donner un équivalent de det M_n .

IV.C - Préciser la dimension et une base de \mathcal{B}_r . Soit (a_n) un élément de \mathcal{S}_r qui n'appartient pas à \mathcal{B}_r . Déterminer un équivalent simple de a_n lorsque $n \to \infty$.

••• FIN •••