Les calculatrices sont autorisées.

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Le sujet comporte 6 pages.

Notations:

On désigne par $\mathbb R$ l'ensemble des nombres réels, par $\mathbb N$ l'ensemble des nombres entiers naturels et par $\mathbb Q$ l'ensemble des nombres rationnels. On note $\mathbb N^*$ l'ensemble $\mathbb N$ privé de 0.

Etant donné un entier naturel non nul n, on note [1, n] l'ensemble des entiers naturels k tels que $1 \le k \le n$.

Pour n entier naturel non nul, on note $\mathcal{M}_n(\mathbb{R})$ (respectivement $\mathcal{M}_{n,1}(\mathbb{R})$) l'espace vectoriel des matrices carrées à n lignes (respectivement l'espace vectoriel des matrices colonnes à n lignes) à coefficients dans \mathbb{R} .

Etant donné une matrice A, la notation $A = (a_{i,j})$ signifie que $a_{i,j}$ est le coefficient de la ligne i et de la colonne j de la matrice A.

On note I_n la matrice unité de $\mathcal{M}_n(\mathbb{R})$ c'est-à-dire, telle que $I_n = (a_{i,j})$ avec :

Pour tout i, $a_{i,i} = 1$ et pour tout $i \neq j$, $a_{i,j} = 0$.

On note J_n la matrice carrée de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont égaux à 1 et K_n la matrice colonne de $\mathcal{M}_{n,1}(\mathbb{R})$ dont tous les coefficients sont égaux à 1.

L'espace vectoriel \mathbb{R}^n est rapporté à la base canonique $(e_1, e_2, ..., e_n)$.

Objectifs:

Le problème porte sur l'étude de matrices vérifiant une propriété (\mathcal{P}) .

Dans la partie I, on fait établir des résultats sur une matrice particulière vérifiant la propriété (\mathcal{P}) .

La partie II conduit, à travers l'étude des matrices vérifiant la propriété (\mathcal{F}) , à caractériser ces matrices à l'aide de matrices semblables.

Dans la partie III, on construit, à l'aide de produits scalaires, une matrice vérifiant la propriété (\mathcal{P}) .

Les trois parties sont indépendantes les unes des autres.

PARTIE I

Soit
$$M = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix} \in \mathcal{M}_{5}(\mathbb{R}).$$

- **I.1.** Calculer la matrice M^2 .
- **I.2.** Exprimer la matrice $M^2 + M$ en fonction des matrices J_5 et I_5 .
- **I.3.** Exprimer la matrice J_5^2 en fonction de la matrice J_5 .
- **I.4.** Déduire des questions précédentes un polynôme annulateur de M.
- **I.5.** Quelles sont les valeurs propres possibles de la matrice M?
- **I.6.** Montrer que *M* possède une valeur propre <u>entière</u> (et une seule) ; déterminer cette valeur propre entière ainsi que le sous-espace propre associé.

PARTIE II

Dans cette partie n et δ sont des nombres entiers tels que $2 \le \delta \le n-1$.

On dit qu'une matrice $M = (m_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ vérifie la propriété (\mathcal{F}) lorsqu'elle vérifie les quatre conditions suivantes :

- (1) M est symétrique
- (2) Pour tout $i \in [1, n]$, $m_{i,i} = 0$
- (3) Chaque ligne de M comporte δ coefficients égaux à 1 et $n-\delta$ coefficients égaux à 0.
- (4) Pour tout $(i, j) \in [1, n]$ x [1, n] avec $i \neq j$, le coefficient $m_{i,j} = 0$, si et seulement si, il existe un entier $k \in [1, n]$ tel que $m_{i,k} = m_{j,k} = 1$. L'entier k est alors unique.

On pourra utiliser sans justification une conséquence de la propriété (\mathcal{F}) : si $m_{i,j} = 1$, alors pour tout entier $k \in [1, n]$ on a le produit $m_{i,k}m_{j,k} = 0$.

Soit $M = (m_{i,j}) \in \mathcal{M}_n(\mathbb{R})$. On suppose que la matrice M vérifie la propriété (\mathcal{F}) .

- **II.1.** Expression de M^2 . On note $M^2 = (a_{i,j})$.
 - **II.1.1.** Pour $i \in [1, n]$, calculer les coefficients $a_{i,i}$
 - **II.1.2.** Pour $(i, j) \in [1, n]$ x [1, n] avec $i \neq j$, déterminer le coefficient $a_{i,j}$ selon la valeur de $m_{i,j}$.
 - **II.1.3.** Montrer que $M^2 = J_n M + dI_n$ où d est un nombre entier que l'on déterminera.

Dans la suite, on note f (respectivement φ) l'endomorphisme de \mathbb{R}^n , de matrice M (respectivement de matrice J_n), relativement à la base canonique $(e_1, e_2, ..., e_n)$ de \mathbb{R}^n . On note id l'endomorphisme identité de \mathbb{R}^n .

Soit v le vecteur de \mathbb{R}^n dont la matrice colonne des coordonnées relativement à la base canonique de \mathbb{R}^n est K_n .

- **II.2.** Relation entre n et δ .
 - **II.2.1.** Déterminer $Im(\varphi)$, l'image de l'application linéaire φ .
 - II.2.2. Soit u un vecteur du noyau de $f-\delta id$. En calculant $(f\circ f)(u)$, montrer que u est colinéaire à v.
 - **II.2.3.** Montrer que δ est une valeur propre de f et déterminer le sous-espace propre correspondant.
 - **II.2.4.** Déduire des questions précédentes l'égalité $n = \delta^2 + 1$.
- **II.3.** Valeurs propres de f.

Dans la suite de cette question II.3, λ est une valeur propre de f avec $\lambda \neq \delta$ et $u = \sum_{i=1}^{n} x_i e_i$ un vecteur propre de f associé à la valeur propre λ .

- **II.3.1.** Justifier l'affirmation : il existe une base de \mathbb{R}^n formée de vecteurs propres de f.
- **II.3.2.** Justifier l'égalité $\sum_{i=1}^{n} x_i = 0$. Que vaut $\varphi(u)$?
- **II.3.3.** Montrer que λ est racine de l'équation (E): $x^2 + x + 1 \delta = 0$.
- **II.3.4.** On note a et b les deux racines de l'équation (E). On suppose qu'une seule de ces racines est valeur propre de f, par exemple a. En utilisant la trace de l'endomorphisme f, exprimer a en fonction de δ . En déduire une impossibilité.

Les deux racines a et b de l'équation (E) sont donc des valeurs propres de f. Dans la suite, on suppose a > b.

II.4. Relations portant sur r, s, a, b et δ .

On note r la dimension du noyau de f - aid et s la dimension du noyau de f - bid.

- **II.4.1.** Exprimer $(a-b)^2$ en fonction de δ .
- **II.4.2.** Exprimer le produit matriciel $\begin{pmatrix} r & s \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a & 1 \\ b & 1 \end{pmatrix}$ en fonction de δ .
- **II.4.3.** En déduire (r-s)(a-b) en fonction de δ .
- **II.4.4.** Pour quelle valeur de δ a-t-on r = s? Que valent alors r et s?

Dans la suite, on caractérise la matrice M par une matrice diagonale semblable à M.

- **II.5.** Premier cas. On suppose que $a b \notin \mathbb{Q}$.
 - **II.5.1.** Montrer que r = s. En déduire δ et n.
 - **II.5.2.** Déterminer a et b et donner une matrice diagonale semblable à M.
- **II.6.** Deuxième cas. On suppose que $a b \in \mathbb{Q}$.
 - **II.6.1.** On écrit $a-b=\frac{m}{q}$ avec m et q dans \mathbb{N}^* . Montrer que tout nombre premier qui divise q divise m. En déduire que $a-b \in \mathbb{N}$.
 - **II.6.2.** Montrer que a-b est un entier impair supérieur ou égal à 3. En notant a-b=2p+1 avec $p \in \mathbb{N}^*$, exprimer δ en fonction de p. En déduire a et b en fonction de p.
 - **II.6.3.** On note c = a b. Montrer que c divise $(c^2 + 3)(c^2 5)$. En déduire que $c \in \{3, 5, 15\}$.
 - **II.6.4.** Pour les différentes valeurs de c, donner le tableau des valeurs de δ, n, a, b, r et s.

PARTIE III

On considère l'espace vectoriel euclidien \mathbb{R}^5 rapporté à la base orthonormale $\mathcal{B} = (e_1, e_2, e_3, e_4, e_5)$. On note (u|w) le produit scalaire de deux vecteurs u et w de \mathbb{R}^5 .

On considère tous les vecteurs u_i obtenus en ajoutant deux vecteurs distincts de \mathcal{B} : $u_i = e_\alpha + e_\beta$ avec $\alpha \neq \beta$.

III.1. Justifier que l'on définit ainsi 10 vecteurs u_i .

On indexe les vecteurs u_i de façon arbitraire : u_i , $i \in [1,10]$.

- III.2. Soit ψ un endomorphisme de \mathbb{R}^5 qui réalise une bijection de la base \mathcal{B} sur elle-même. Montrer que pour tout $(i,j) \in [1,10] \times [1,10]$, on a $(u_i|u_j) = (\psi(u_i)|\psi(u_j))$.
- **III.3.** Calcul des produits scalaires $(u_i|u_j)$.
 - **III.3.1.** Pour $i \in [1,10]$, calculer $(u_i | u_i)$.
 - **III.3.2.** On suppose que $u_i = e_{\alpha} + e_{\beta}$ et que $u_j = e_{\alpha} + e_{\gamma}$ avec $\beta \neq \gamma$. Calculer $(u_i | u_j)$.
 - III.3.3. On suppose que $u_i = e_{\alpha} + e_{\beta}$ et que $u_j = e_{\gamma} + e_{\varepsilon}$ avec les quatre indices α , β , γ , ε tous différents. Calculer $(u_i | u_j)$.
- **III.4.** Soit $A = (a_{i,j})$ avec $a_{i,j} = (u_i | u_j)$.
 - **III.4.1.** Écrire une combinaison linéaire M de A, I_{10} et J_{10} susceptible de vérifier la propriété (\mathcal{F}) définie dans la partie II.
 - III.4.2. Justifier que cette matrice M vérifie la propriété (\mathcal{P}) .

Fin de l'énoncé.