Les calculatrices sont interdites

N.B.: Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il la signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

La partie III est indépendante des deux premières.

PARTIE I

Soit $(P_n)_{n\in\mathbb{N}}$ la suite de fonctions polynomiales définies sur IR par :

$$P_0(x) = 1,$$

$$\forall n \in \mathbb{N}^*, \qquad P_n(x) = \prod_{k=1}^n (x+k).$$

I.1. Soient $m \in \mathbb{N}$ et $n \in \mathbb{N}$. Donner une expression de $P_n(m)$ à l'aide de factorielles.

Soit α un nombre réel qui n'est pas un nombre entier strictement négatif. On définit la fonction f_{α} de la variable réelle x par :

$$f_{\alpha}(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n}}{2^{2n} n! P_n(\alpha)}.$$

- **I.2.** Montrer que f_{α} est définie sur IR tout entier.
- I.3. On considère l'équation différentielle linéaire homogène en la fonction inconnue y de la variable réelle x:

$$(E_{\alpha})$$
 $xy''(x) + (2\alpha + 1)y'(x) + xy(x) = 0.$

- **I.3.1.** Montrer que f_{α} est solution de (E_{α}) sur \mathbb{R} .
- **I.3.2.** Réciproquement, soit y une solution de (E_{α}) , paire, et développable en série entière de la variable x au voisinage de x = 0. Exprimer y en fonction de f_{α} et y(0).

On suppose à présent, et jusqu'à la fin de la partie I de ce problème, que $\alpha \notin \mathbb{Z}$.

I.4. Soit g_{α} la fonction définie sur $]0, +\infty[$ par :

$$\forall x \in]0, +\infty[, \qquad g_{\alpha}(x) = x^{-2\alpha} f_{-\alpha}(x).$$

- **I.4.1.** Montrer que g_{α} est solution de (E_{α}) sur $]0, +\infty[$.
- **I.4.2.** En comparant les limites à droite en 0 de f_{α} et g_{α} , montrer que ces fonctions sont linéairement indépendantes dans $C^{2}(]0, +\infty[, \mathbb{R})$.

En déduire la solution générale de (E_{α}) sur $]0, +\infty[$.

I.4.3. Soit y une fonction de classe C^2 sur $]-\infty,0[$ à valeurs réelles.

Montrer que y est solution de (E_{α}) sur $]-\infty,0[$ si et seulement si la fonction $x\mapsto y(-x)$ est solution de (E_{α}) sur $]0,+\infty[$.

En déduire la solution générale de (E_{α}) sur $]-\infty,0[$.

- **I.5.** Soit j_{α} la fonction définie sur $]0, +\infty[$ par $j_{\alpha}(x) = x^{\alpha} f_{\alpha}(x)$.
 - **I.5.1.** Montrer que j_{α} est solution sur $]0,+\infty[$ de l'équation différentielle :

$$(B_{\alpha})$$
 $x^2y''(x) + xy'(x) + (x^2 - \alpha^2)y(x) = 0.$

Que peut-on dire de $j_{-\alpha}$?

I.5.2. En déduire la solution générale de (B_{α}) sur $]0, +\infty[$ puis sur $]-\infty, 0[$.

PARTIE II

Dans cette partie, α désigne un nombre réel strictement supérieur à $-\frac{1}{2}$. On définit la fonction h_{α} de la variable réelle x par :

$$h_{\alpha}(x) = \int_{0}^{1} (1 - t^{2})^{\alpha - \frac{1}{2}} \cos xt \ dt.$$

- II.1. Montrer que h_{α} est définie et de classe \mathcal{C}^2 sur \mathbb{R} .
- II.2.
 - II.2.1. Montrer que pour tout $x \in \mathbb{R}$ on a $xh''_{\alpha}(x) + xh_{\alpha}(x) = \int_0^1 (1-t^2)^{\alpha+\frac{1}{2}}x\cos xt \ dt$.
 - II.2.2. A l'aide d'une intégration par parties, en déduire que h_{α} est solution de (E_{α}) sur IR.
- II.3. Montrer que h_{α} est développable en série entière de x sur \mathbb{R} , et que l'on a :

$$\forall x \in \mathbb{R}, \qquad h_{\alpha}(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n I_n(\alpha) x^{2n}}{(2n)!},$$

où
$$I_n(\alpha) = \int_0^1 (1 - t^2)^{\alpha - \frac{1}{2}} t^{2n} dt.$$

- II.4. Exprimer h_{α} en fonction de $h_{\alpha}(0)$ et f_{α} .
- **II.5.** En déduire pour tout $n \in \mathbb{N}$ une expression de $I_n(\alpha)$ en fonction de n, $P_n(\alpha)$ et $I_0(\alpha)$.

PARTIE III

Soit $F: \mathbb{R}^2 - \{(0,0)\} \to \mathbb{R}$ une fonction de deux variables réelles x et y de classe C^2 sur $\mathbb{R}^2 - \{(0,0)\}$. On lui associe la fonction \tilde{F} de classe C^2 sur $]0, +\infty[\times\mathbb{R}$ définie par :

$$\tilde{F}(r,\theta) = F(r\cos\theta, r\sin\theta)$$

pour tout $(r, \theta) \in]0, +\infty[\times \mathbb{R}]$.

On note ΔF le laplacien de F, défini par $\Delta F = \frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial u^2}$.

III.1. Montrer que pour tout $(r, \theta) \in]0, +\infty[\times \mathbb{R} \text{ on a}]$

$$\Delta F(r\cos\theta, r\sin\theta) = \frac{\partial^2 \tilde{F}}{\partial r^2}(r, \theta) + \frac{1}{r} \frac{\partial \tilde{F}}{\partial r}(r, \theta) + \frac{1}{r^2} \frac{\partial^2 \tilde{F}}{\partial \theta^2}(r, \theta).$$

On se propose de déterminer les fonctions F non identiquement nulles telles que \tilde{F} soit de la forme $\tilde{F}(r,\theta) = f(r)g(\theta)$ et que $\Delta F + \omega^2 F = 0$, où ω est un nombre réel positif ou nul, et f et g des fonctions de classe C^2 sur $]0, +\infty[$ et \mathbb{R} respectivement.

- III.2. Soient F, \tilde{F} , f et g vérifiant les conditions ci-dessus.
 - III.2.1. Montrer que g est 2π -périodique.
 - III.2.2. Montrer qu'il existe un nombre réel λ tel que l'on ait simultanément :

(i)
$$\forall r \in]0, +\infty[, \quad r^2 f''(r) + r f'(r) + (r^2 \omega^2 - \lambda) f(r) = 0,$$
(ii)
$$\forall \theta \in \mathbb{R}, \quad g''(\theta) + \lambda g(\theta) = 0.$$

- III.2.3. Déduire de la question III.2.1. que le nombre réel λ est nécessairement de la forme $\lambda = p^2$, avec $p \in \mathbb{N}$.
 - III.2.4. En déduire la forme générale de g.

On distinguera le cas où p = 0 et le cas où $p \neq 0$.

- III.3. On suppose dans cette question que $\omega = 0$.
 - **III.3.1.** Déterminer la forme générale de f dans le cas où p=0.
 - III.3.2. Déterminer la forme générale de f dans le cas où $p \neq 0$.

On pourra commencer par chercher les fonctions f qui sont de la forme $f(r) = r^{\alpha}$.

III.4. On suppose dans cette question que $\omega \neq 0$.

Soit f_1 la fonction définie sur $]0, +\infty[$ par $f_1(r) = f\left(\frac{r}{r}\right)$.

Montrer que f_1 est solution sur $]0, +\infty[$ de l'équation différentielle :

$$(B_p) r^2 y''(r) + ry'(r) + (r^2 - p^2)y(r) = 0.$$

Fin de l'énoncé