MATHÉMATIQUES I

On étudie certaines classes de fonctions appartenant à l'ensemble \mathcal{B} des fonctions bornées et continues par morceaux de \mathbb{R} dans \mathbb{C} : c'est un espace vectoriel sur \mathbb{C} . Il est muni de la norme uniforme définie par

$$||x||_{\infty} = \sup_{t \in \mathbb{R}} |x(t)|$$

Pour tout ω appartenant à IR, on note e_ω la fonction définie sur IR par la formule : $e_\omega(t)=e^{i\omega t}$.

On note U la fonction définie par U(t)=1 si t>0, =0 sinon. Tous les sous-espaces vectoriels considérés seront des $\mathbb C$ -espaces vectoriels. On notera x^* la conjuguée complexe de x, c'est-à-dire la fonction : $t\mapsto \overline{x(t)}$.

Partie I -

Soit x une fonction appartenant à ${\mathscr B}$. On appelle moyenne de x , s'il existe, le nombre

$$M(x) = \lim_{T \to \infty} M_T(x) \text{ avec } M_T(x) = \frac{1}{T} \int_0^T x(t) dt \tag{1}$$

On dira alors que la fonction x est moyennable.

I.A -

- I.A.1) Montrer que M_T est une forme linéaire sur \mathcal{B} , que l'ensemble des fonctions moyennables \mathcal{M}_1 est un sous-espace vectoriel de \mathcal{B} , et que M est une forme linéaire sur \mathcal{M}_1 . On notera de façon équivalente Mx ou M(x) cette moyenne.
- I.A.2) Vérifier que M_T et M sont lipchitziennes pour $\|.\|_{\infty}$.
- **I.B** Montrer que la moyenne est invariante par translation : si $\tau \in \mathbb{R}$ et $x \in \mathcal{M}_1$ on pose $x_{\tau}(t) = x(t-\tau)$, alors x_{τ} est moyennable et $Mx = Mx_{\tau}$.

I.C -

I.C.1) Soit x une fonction de \mathscr{B} de période P (P > 0). Montrer que pour tout $a \in \mathbb{R}$, $\int_a^{a+P} \!\! x(t) dt = \int_0^P \!\! x(t) dt$. En déduire que x est moyennable, et que M(x) est égale à la moyenne sur n'importe quel intervalle de longueur P.

Filière MP

- I.C.2) En particulier montrer que $M(e_{\omega})=0$ pour ω réel non nul, et $M(e_{0})=1$.
- I.C.3) Montrer que si $\lim_{t\to\infty} x(t) = c$, alors x est moyennable et M(x) = c.
- I.C.4) Soit x_0 la fonction définie par $x_0(t) = U(t)e^{i\ln(t+1)}$. Vérifier que $x_0\in \mathcal{B}$, calculer $M_T(x_0)$. Examiner le comportement de $M_T(x_0)$ lorsque $T\to \infty$, et en déduire que x_0 n'est pas moyennable.
- **I.D** La fonction x est dite de carré moyennable si $T \mapsto M_T |x|^2$ admet une limite lorsque T tend vers $+\infty$. Cette limite est appelée moyenne quadratique de x:

$$M|x|^2 = \lim_{T \to \infty} M_T(|x|^2)$$
 (2)

On notera \mathcal{M}_2 l'ensemble des fonctions de \mathcal{B} de carré moyennable.

- I.D.1) Montrer que toute fonction qui tend vers 0 à l'infini est aussi de moyenne quadratique nulle.
- I.D.2) Pour $x, y \in \mathcal{M}_2$, donner une majoration de $\left|M_T(|x|^2) M_T(|y|^2)\right|$ et $\left|M|x|^2 M|y|^2\right|$ en fonction de $\|x\|_{\infty}$, $\|y\|_{\infty}$, $\|x y\|_{\infty}$.
- I.D.3) Montrer, à l'aide de x_0 et U, que \mathcal{M}_2 n'est pas un espace vectoriel.
- **I.E** On dira que deux fonctions, x, y de \mathcal{M}_2 sont *comparables* si existe

$$\langle x, y \rangle = M(xy^*) = \lim_{T \to \infty} M_T(xy^*)$$
 (3)

I.E.1) Si E est un espace vectoriel inclus dans \mathcal{M}_2 , montrer que deux fonctions $x,y\in E$ sont comparables (développer $|x+y|^2$ et $|x+iy|^2$). Il en résulte que sur E, $(x,y)\mapsto \langle x,y\rangle$ est un « pseudo-produit scalaire » (il est linéaire à gauche, semi-linéaire à droite, positif, mais pas strictement). On a en particulier

$$M|x + y|^2 = M|x|^2 + M|y|^2 + 2Re < x, y >$$
 (4)

- I.E.2) On dira que deux fonctions $x, y \in \mathcal{M}_2$, sont *orthogonales* si $\langle x, y \rangle = 0$. Que vaut alors $M|x+y|^2$?
- I.E.3) Écrire l'inégalité de Schwarz (on ne demande pas de la démontrer).

I.F - Soit P un réel strictement positif. Montrer que l'ensemble des fonctions P - périodiques de \mathscr{B} est un espace vectoriel de fonctions de carré moyennable et comparables.

I.G - Soit

$$\mathcal{P} = \{x : x(t) = \sum_{k=1}^{N} c_k e^{i\omega_k t} \mid N \in \mathbb{IN}, c_k \in \mathbb{C}, \omega_k \in \mathbb{IR} \text{ distincts } \}$$

l'ensemble des polynômes trigonométriques (élargi par rapport à celui utilisé dans les séries de Fourier : ici les fréquences sont quelconques).

Montrer que \mathscr{P} est stable par produit de fonctions, et que l'application $(x, y) \mapsto \langle x, y \rangle$ définit un produit scalaire sur \mathscr{P} .

En particulier, pour
$$x=\sum_{k=1}^N c_k e_{\omega_k}$$
, établir que $M|x|^2=\sum_{k=1}^N \left|c_k\right|^2$.

- **I.H** Soit une suite $x_n \in \mathcal{M}_1$ qui converge uniformément vers $x \in \mathcal{B}$.
- I.H.1) Montrer l'existence de $m = \lim_{n \to \infty} M(x_n)$ (utiliser I.A.2).
- I.H.2) En déduire que $x \in \mathcal{M}_1$ et M(x) = m (pour $\epsilon > 0$, on choisira n tel que $\|x x_n\|_{\infty} < \epsilon$ et $|m M(x_n)| < \epsilon$).
- I.I Soit une suite $x_n\!\in\mathcal{M}_2$ $\,$ qui converge uniformément vers $x\!\in\!\mathcal{B}$.
- I.I.1) Montrer que $K = \sup \{ \|x_n\|_{\infty}, \|x\|_{\infty} (n \in \mathbb{IN}) \} < + \infty$.
- I.I.2) Montrer que $\lim_{n\to\infty} M|x_n|^2 = m_2$ existe.
- I.I.3) En suivant la méthode du I.H.2), en déduire que $x \in \mathcal{M}_2$ et $M|x|^2 = m_2$.

Partie II -

On appelle ${\mathscr Q}$ l'ensemble des limites uniformes sur IR de suites de fonctions appartenant à ${\mathscr P}$.

- II.A Montrer les propriétés suivantes :
- II.A.1) \mathscr{Q} est un espace vectoriel inclus dans $\mathscr{M}_1 \cap \mathscr{M}_2$, et fermé pour $\|.\|_{\infty}$.
- II.A.2) Toutes les fonctions de $\mathscr Q$ sont comparables, et continues.
- II.A.3) Si $x \in \mathcal{Q}$, alors $\forall \tau \in \mathbb{R}$ $x_{\tau} \in \mathcal{Q}$.

Filière MP

II.A.4) Si
$$\sum_{k=0}^{\infty} |c_k| < +\infty$$
 et $\omega_k \in \mathbb{R}$, la série de fonctions

$$x = \sum_{k=0}^{\infty} c_k e_{\omega_k} \text{ converge normalement sur } \mathbb{R} \text{ et } x \in \mathcal{Q} \text{ .}$$

II.A.6) Soit $x, x \in \mathcal{Q}$, à valeurs réelles, et $y : \mathbb{R} \to \mathbb{C}$ continue. Montrer que $y \circ x \in \mathcal{Q}$ (le montrer d'abord lorsque y est une fonction polynomiale à coefficients complexes).

II.B - Les coefficients de Fourier-Bohr de $x \in \mathcal{Q}$ sont définis, pour une fréquence $\omega \in \mathbb{R}$, par $c(\omega) = \langle x, e_{\omega} \rangle$.

Si P_n est une suite de $\mathscr P$ convergeant uniformément vers x, la réunion Ω des fréquences présentes dans chacun des P_n est un ensemble fini ou dénombrable que l'on énumère donc selon le cas $\Omega = \{\omega_k, \ 0 \le k \le m\}$ ou $\Omega = \{\omega_k, k \in \mathbb{N}\}$.On pose

$$P_n = \sum_b c_{n,\,k}\; e_{\omega_k}$$
 et $d(n) = \max\{k: c_{n,\,k} \neq 0\}$, « degré » de P_n .

Montrer que pour tout réel $\omega, c(\omega)$ existe et vaut $c(\omega) = \lim_{n \to \infty} \langle P_n, e_\omega \rangle$. En déduire que :

si
$$\omega \notin \Omega$$
 alors $c(\omega) = 0$, et pour tout k , $c(\omega_k) = c_k = \lim_{n \to \infty} c_{n,k}$.

II.C - Si Ω est fini, montrer que

$$x(t) = \sum_{k=0}^{m} c_k e^{i\omega_k t}$$
. En déduire la formule de Parseval : $M|x|^2 = \sum_{k=0}^{m} |c_k|^2$.

II.D - On se propose d'établir la formule de Parseval dans le cas où Ω est infini. On construit la suite n_j définie par $n_0=0$, $n_k=\min(n:d(n)>d(n_{k-1}))$. Soit $q_k(t)=P_{n_k}(t)$, on a donc $d_k=d(n_k)$ suite strictement croissante vers $+\infty$ (le fait que la suite n_j existe est admis).

II.D.1) On pose

$$S_N = \sum_{k=0}^N c_k e_{\omega_k} \cdot \text{Calculer } M \big| x - S_N \big|^2 \text{ et en déduire que } \sum_{k=0}^\infty \big| c_k \big|^2 \leq M \big| x \big|^2 \, .$$

II.D.2) Pour tout $k \ge 0$, montrer que $x - S_{d_k}$ est orthogonal au sous-espace vectoriel E_k engendré par les e_{ω_j} où $0 \le j \le d_k$. En déduire que

$$M|x-q_k|^2 \ge M|x-S_{d_k}|^2 = M|x|^2 - \sum_{j=0}^{d_k} |c_j|^2$$

II.D.3) Déduire alors de la convergence uniforme sur $\mathbb R$ de P_n vers x que

$$\lim_{k \to \infty} M |x - q_k|^2 = 0$$

En conclure que

$$\lim_{n \to \infty} M |x - S_n|^2 = 0, \ M |x|^2 = \sum_{k=0}^{\infty} |c_k|^2$$
 (5)

Partie III -

Pour une fonction $x \in \mathcal{B}$, la fonction de corrélation de x est définie (si cela existe) par

$$\tau \in \text{IR} \quad \gamma_x(\tau) = \langle x, x_{\tau} \rangle = \lim_{T \to \infty} M_T(x x_{\tau}^*)$$
 (6)

où * est la conjugaison complexe.

On appellera fonction stationnaire une fonction x pour laquelle $\forall \tau \in \mathbb{R}$, $\gamma_x(\tau)$ existe.

III.A - Montrer qu'une fonction stationnaire appartient à $\,\mathscr{M}_{2}\,$.

III.B - Montrer que $|\gamma_x(\tau)| \le \gamma_x(0)$, et que $\gamma_x(-\tau) = \gamma_x(\tau)^*$.

III.C - Si x est stationnaire, montrer qu'il en est de même de $y=e_{\omega}x$ et que, pour tout τ appartenant à \mathbb{R} , on a $\gamma_{\nu}(\tau)=\gamma_{x}(\tau)e^{i\omega\tau}$.

III.D -

III.D.1) Si x appartient à $\mathcal Q$, montrer que x est stationnaire. On note $\{\omega_k, c_k\}$ ses fréquences et coefficients de Fourier-Bohr, et S_n le polynôme trigonométrique défini par :

$$S_n = \sum_{k=0}^n c_k e_{\omega_k}$$

III.D.2) Pour tout $\tau, \tau \in \mathbb{R}$, calculer $\gamma_{S_n}(\tau)$.

III.D.3) Montrer que γ_r est la somme de la série de fonctions

$$\sum_{k=0}^{+\infty} \left| c_k \right|^2 e_{\omega_k}$$

normalement convergente sur IR et que γ_x appartient à \mathscr{Q} (on majorera $\left|\gamma_x(\tau)-\gamma_{S_n}(\tau)\right|$ en fonction de $M|x-S_n|^2$).

III.E - Soit x une fonction 1-périodique de \mathscr{B} .

III.E.1) Montrer qu'elle est stationnaire, et que γ_x est aussi 1-périodique.

III.E.2) On note

$$a_k = \int_0^1 x(t)e^{-2i\pi kt}dt, \quad k \in \mathbb{Z}$$

les coefficients de Fourier complexes de x . Montrer que les coefficients de Fourier de γ_x sont $c_k=\left|a_k\right|^2$.

III.F - Soit E(t) la partie entière de t et F(t) = t - E(t) sa partie fractionnaire. La fonction x_1 définie par $x_1(t) = e^{-2i\pi a F(t)}$ où a est un réel irrationnel, est une fonction 1-périodique de \mathscr{B} , de coefficients de Fourier complexes a_k .

III.F.1) Calculer les a_k . Que vaut

$$\sum_{k=-\infty}^{\infty} |a_k|^2 ?$$

 $III.F.2) \quad Calculer \; \gamma_{x_1}(\tau) \; \; pour \; \tau \! \in \! [0,1[\; \; et \; v\'{e}rifier \; que \; \gamma_{x_1} \; est \; continue \; sur \; I\!R \, .$

III.F.3) En déduire que $\gamma_x \in \mathcal{Q}$. Calculer

$$\sum_{k=-\infty}^{+\infty} \frac{(-1)^k}{\pi^2 (a+k)^2}.$$

••• FIN •••