Les calculatrices sont interdites

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il la signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

PARTIE I

On considère l'équation différentielle linéaire du 2° ordre en la fonction inconnue y de la variable réelle x:

$$(\mathcal{E}_{\lambda}) x(x+1)y''(x) + (2x+1)y'(x) - \lambda(\lambda+1)y(x) = 0,$$

où λ désigne un paramètre réel.

I.1. Etant donné $\lambda \in \mathbb{R}$, comparer les équations (\mathcal{E}_{λ}) et $(\mathcal{E}_{-\lambda-1})$. On supposera dans la suite du problème que $\lambda \geq -\frac{1}{2}$.

Dans la suite de cette partie, y désigne une fonction de la variable réelle x, admettant un développement en série entière $y(x) = \sum_{n=0}^{+\infty} a_n x^n$ au voisinage de 0.

I.2. Montrer que, pour que y soit solution de l'équation (\mathcal{E}_{λ}) , il faut et il suffit que l'on ait pour tout $n \in \mathbb{N}$:

$$a_{n+1} = \frac{(\lambda + n + 1)(\lambda - n)}{(n+1)^2} a_n.$$

Tournez la page SVP

Page 2

I.3.

- **I.3.1.** Donner une condition nécessaire et suffisante sur $\lambda \in [-\frac{1}{2}, +\infty[$ pour que l'équation (\mathcal{E}_{λ}) admette des solutions polynomiales de degré donné $d \in \mathbb{N}$?
- **I.3.2.** Lorsque c'est le cas, montrer qu'il existe une unique solution polynomiale de (\mathcal{E}_{λ}) de degré d, que nous noterons φ_d , telle que $\varphi_d(0) = 1$.
 - **I.3.3.** Expliciter la fonction polynôme φ_1 .
 - **I.3.4.** Déterminer les coefficients a, b, c, a', b', c' tels que :

$$\frac{8x^2 + 8x + 1}{x(x+1)(2x+1)} = \frac{a}{x} + \frac{b}{x+1} + \frac{c}{2x+1}, \quad \frac{1}{x(x+1)(2x+1)^2} = \frac{a'}{x} + \frac{b'}{x+1} + \frac{c'}{(2x+1)^2}.$$

En déduire la solution générale de l'équation (\mathcal{E}_1) sur $]0, +\infty[$.

- **I.4.** On se place dans le cas où $\lambda \geq -\frac{1}{2}$, $\lambda \notin \mathbb{N}$.
 - **I.4.1.** On suppose que y est une solution non identiquement nulle de (\mathcal{E}_{λ}) .

Déterminer le rayon de convergence de la série entière $\sum_{n=0}^{+\infty} a_n x^n$.

- **I.4.2.** Montrer qu'il existe une unique solution de (\mathcal{E}_{λ}) , que nous noterons φ_{λ} , développable en série entière de la variable x sur]-1,+1[et telle que $\varphi_{\lambda}(0)=1$.
- **I.4.3.** Expliciter les développements en série entière de la variable x des fonctions $\varphi_{-\frac{1}{2}}$ et $\varphi_{\frac{1}{2}}$.

PARTIE II

Soit ψ la fonction de la variable réelle x définie par :

$$\psi(x) = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} \sqrt{1 + x \sin^2 t} \, dt.$$

- **II.1.** Montrer que ψ est définie et continue sur $[-1, +\infty[$.
- II.2. Montrer que ψ est indéfiniment dérivable sur $]-1,+\infty[$.

II.3.

II.3.1. Montrer que pour tout
$$u \in]-1, +1[$$
 on a $\sqrt{1+u} = \sum_{n=0}^{+\infty} \frac{(-1)^{n-1}}{2n-1} \frac{(2n)!}{2^{2n}(n!)^2} u^n$.

II.3.2. Montrer que ψ est développable en série entière de la variable x sur]-1,+1[et que l'on a :

$$\forall x \in]-1, +1[, \qquad \psi(x) = \sum_{n=0}^{+\infty} \frac{(-1)^{n-1}}{2n-1} \frac{(2n)!}{2^{2n}(n!)^2} \left(\frac{2}{\pi} \int_0^{\frac{\pi}{2}} \sin^{2n} t \ dt\right) x^n.$$

II.3.3. Pour tout $n \in \mathbb{N}$ on pose $I_n = \int_0^{\frac{\pi}{2}} \sin^{2n} t \, dt$. Montrer que pour tout $n \ge 1$ on a $I_n = \frac{2n-1}{2n} I_{n-1}$.

Calculer I_0 .

En déduire I_n pour tout $n \in \mathbb{N}$, ainsi que le développement de ψ en série entière de la variable x sur]-1,+1[.

- **II.3.4.** Montrer que pour tout $n \in \mathbb{N}$, on a $\frac{(2n)!}{2^{2n}(n!)^2} \leq 1$.
- II.3.5. Montrer que le développement de ψ en série entière est intégrable terme à terme sur] -1,+1[, et en déduire que :

$$\int_{-1}^{+1} \psi(x) \ dx = -2 \sum_{p=0}^{+\infty} \frac{1}{(4p-1)(2p+1)} \left(\frac{(4p)!}{2^{4p}((2p)!)^2} \right)^2.$$

- **II.4.** Déduire du développement de ψ en série entière une expression de $\psi(x)$ en fonction de $\varphi_{\frac{1}{2}}(x)$ et $\varphi_{-\frac{1}{2}}(x)$ pour tout $x \in]-1,+1[$.
- II.5. Dans le plan affine euclidien rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) , on considère l'ellipse \mathcal{C} paramétrée par $t \in [0, 2\pi] \longmapsto b \cos t \cdot \vec{i} + a \sin t \cdot \vec{j}$, où a et b sont des nombres réels donnés tels que $a \geq b > 0$. On note ℓ sa longueur et e son excentricité.

Montrer que
$$\ell = \pi a \left[\varphi_{\frac{1}{2}}(-e^2) + \varphi_{-\frac{1}{2}}(-e^2) \right].$$

PARTIE III

Soit f la fonction de la variable réelle t définie par :

$$f(t) = \frac{1}{2} \int_{-1}^{+1} \sqrt{1 + x \sin^2 t} \, dx.$$

Page 4

- III.1. Montrer que f est définie et continue sur \mathbb{R} , et 2π -périodique.
- III.2. Montrer que f est de classe C^1 sur \mathbb{R} .
- III.3. Montrer que la série de Fourier de f est de la forme :

$$\frac{\alpha_0}{2} + \sum_{n=1}^{+\infty} \alpha_{2n} \cos 2nt,$$

où $\alpha_0, \alpha_2, \dots \alpha_{2n}, \dots$ sont des nombres réels que l'on ne cherchera pas à calculer. Préciser pourquoi la fonction f est égale à la somme de sa série de Fourier.

III.4. A l'aide du résultat de la question II.3.5, donner une expression de α_0 sous forme de somme d'une série numérique.

Fin de l'énoncé