Les calculatrices sont interdites

N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il la signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Objectifs, notations et définitions

Les objectifs de ce problème sont les suivants :

- étendre la notion d'exponentielle à une matrice sans faire appel aux séries, mais par analogie avec l'introduction de la fonction réelle de variable réelle : $s \mapsto e^{\alpha s}$ comme solution du problème de Cauchy : $y' = \alpha y$, y(0) = 1.
 - établir quelques propriétés de cette exponentielle.
- résoudre dans \mathbb{R}^3 une équation différentielle du type $x'=u\wedge x$ que l'on rencontre en particulier en mécanique du solide.

Soit \mathbb{N} l'ensemble des entiers naturels, $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$ et pour n dans \mathbb{N}^* , $\mathbb{N}_n = \{1, 2, \ldots, n\}$. Si n est un entier supérieur ou égal à 1, on note $\mathcal{M}_n(\mathbb{C})$ le \mathbb{C} -espace vectoriel des matrices carrées d'ordre n à coefficients dans \mathbb{C} et $\mathcal{M}_{n,1}(\mathbb{C})$ le \mathbb{C} -espace vectoriel des matrices colonnes à n lignes à coefficients dans \mathbb{C} . I_n est la matrice identité dont les coefficients sont donnés par le symbole de Kronecker défini par

$$\delta_{ij} = \begin{cases} 1 & \text{si} \quad i = j \\ 0 & \text{si} \quad i \neq j \end{cases}$$

Pour $A=(a_{ij})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant n}}$ appartenant à $\mathcal{M}_n(\mathbb{C})$, tA désigne la matrice transposée de A, A_{ij} désigne le cofacteur de l'élément a_{ij} et on appelle comatrice de A la matrice dont le coefficient de la $i^{\text{ème}}$ ligne et de la $j^{\text{ème}}$ colonne est A_{ij} . Cette matrice sera notée $\operatorname{Com} A$.

Tournez la page S.V.P.

Lorsque les coefficients a_{ij} de A sont des fonctions de s définies sur un intervalle I de \mathbb{R} , on rappelle que A est dérivable sur I si et seulement si toutes les fonctions $a_{ij}:I\longrightarrow\mathbb{C}$ sont dérivables sur I et qu'alors :

$$\forall s \in I , A'(s) = (a'_{ij}(s))_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant n}}$$

On pourra utiliser sans le redémontrer que le produit de deux applications A et B de I dans $\mathcal{M}_n(\mathbb{C})$, dérivables sur I, est dérivable sur I et que :

$$\forall s \in I, (AB)'(s) = A'(s)B(s) + A(s)B'(s)$$

PARTIE I

I.1 Soit la matrice
$$M$$
 donnée par : $M = \begin{pmatrix} 5 & 0 & 3 \\ -6 & -1 & -3 \\ -6 & 0 & -4 \end{pmatrix}$

- a) Calculer $\det M$.
- **b**) Calculer la matrice produit $M \times {}^{t}Com M$.
- c) Déterminer le polynôme caractéristique χ_M de M.
- **d**) Calculer $(I_3 + M)(2I_3 M)$, puis la matrice $\chi_M(M)$.

I.2 Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{C})$, $(\beta_1, \beta_2, \dots, \beta_n) \in \mathbb{C}^n$ et B la matrice déduite de A en remplaçant la $j^{\text{ème}}$ colonne de A par la colonne formée des coefficients $\beta_1, \beta_2, \dots, \beta_n$.

- a) Montrer que det $B = \sum_{k=1}^{n} \beta_k A_{kj}$.
- **b**) En déduire les égalités : $\forall\,(l,j)\in\mathbb{N}_n^2$, $\sum_{k=1}^n a_{kl}A_{kj}=(\det A)\delta_{lj}$.
- c) Montrer de même les égalités : $\forall \, (l,i) \in \mathbb{N}_n^2 \, , \, \sum_{l=1}^n a_{lk} A_{ik} = (\det A) \delta_{li}.$
- **d**) En déduire les formules :

$$A \times ({}^{t}\operatorname{Com} A) = (\det A)I_{n} \text{ et } ({}^{t}\operatorname{Com} A) \times A = (\det A)I_{n}$$

- **I.3 a)** Soit $(G_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$ une famille de n^2 polynômes à coefficients complexes, tous de degré inférieur ou égal à 1. Pour $x \in \mathbb{C}$, on note G(x) la matrice de $\mathcal{M}_n(\mathbb{C})$ de terme général $G_{ij}(x)$. Montrer par récurrence sur l'ordre de la matrice qu'il existe un polynôme Q à coefficients complexes, de degré inférieur ou égal à n tel que pour tout x appartenant à \mathbb{C} , det G(x) = Q(x).
- **b)** Soit $p \in \mathbb{N}$ et D_0, D_1, \ldots, D_p des matrices de $\mathcal{M}_n(\mathbb{C})$ telles que pour tout $x \in \mathbb{C}$, $\sum_{k=0}^p x^k D_k = 0$. Montrer que pour tout k dans $\{0, 1, \ldots, p\}$, $D_k = 0$.

- **I.4** Pour tout $x \in \mathbb{C}$, on pose $C(x) = {}^t\mathrm{Com}(A xI_n)$ et on note $\chi_A(x) = \sum_{k=0}^n \alpha_k x^k$ le polynôme caractéristique de A.
 - a) Montrer qu'il existe n matrices $B_0, B_1, \ldots, B_{n-1}$ dans $\mathcal{M}_n(\mathbb{C})$ telles que :

$$orall x \in \mathbb{C} \; , \; C(x) = \sum_{k=0}^{n-1} x^k B_k$$

b) En utilisant les questions I.2 et I.3, établir les égalités matricielles suivantes :

$$\begin{cases} AB_0 &= \alpha_0 I_n \\ AB_k - B_{k-1} &= \alpha_k I_n \\ -B_{n-1} &= \alpha_n I_n \end{cases}, \quad \forall k \in \mathbb{N}_{n-1}$$

c) En déduire que le polynôme caractéristique χ_A de la matrice A est un polynôme annulateur de A.

PARTIE II

Soit $A \in \mathcal{M}_n(\mathbb{C})$, $\lambda_1, \lambda_2, \ldots, \lambda_n$ ses valeurs propres dans \mathbb{C} non nécessairement distinctes. On introduit les matrices suivantes :

$$H = \begin{pmatrix} \lambda_1 & 0 & \dots & \dots & 0 \\ 1 & \lambda_2 & 0 & & \vdots \\ 0 & 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 & \lambda_n \end{pmatrix} , Y_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$C_1 = I_n \text{ et } \forall k \in \{2, 3, \dots, n\} , \ C_k = \prod_{j=1}^{k-1} (A - \lambda_j I_n)$$

- **II.1 a)** Montrer que A commute avec chaque matrice C_k .
 - **b)** Montrer que $(A \lambda_n I_n)C_n = 0$.
- II.2 On rappelle que le problème de Cauchy

$$Y'(s) = HY(s)$$
 , $Y(0) = Y_0$

admet une unique solution $Y: \mathbb{R} \longrightarrow \mathcal{M}_{n,1}(\mathbb{C})$, $s \longmapsto Y(s)$. On notera $(y_i(s))_{1 \leqslant i \leqslant n}$ les composantes de Y(s).

Tournez la page S.V.P.

On considère alors le nouveau problème de Cauchy suivant :

$$\forall s \in \mathbb{R}, E'(s) = AE(s) \text{ et } E(0) = I_n$$
 (1)

où la fonction inconnue E est une application dérivable de \mathbb{R} dans $\mathcal{M}_n(\mathbb{C})$.

a) Soit
$$E_A : \mathbb{R} \longrightarrow \mathcal{M}_n(\mathbb{C})$$
, $s \longmapsto \sum_{k=1}^n y_k(s) C_k$. Montrer que:

$$\forall s \in \mathbb{R}, E'_A(s) = \sum_{k=1}^{n-1} y_k(s) [\lambda_k C_k + C_{k+1}] + y_n(s) \lambda_n C_n$$

En déduire que E_A est solution du problème (1).

b) Montrer que E_A est aussi solution du problème (2) ci-dessous :

$$\forall s \in \mathbb{R} , E'(s) = E(s)A \text{ et } E(0) = I_n$$
 (2)

- c) Soit $\varphi: \mathbb{R} \longrightarrow \mathcal{M}_n(\mathbb{C})$, $s \longmapsto E_A(s)E_A(-s)$. Montrer que la fonction φ est constante égale à I_n . En déduire que pour tout $s \in \mathbb{R}$, $E_A(s)$ est inversible et donner son inverse.
- d) Soit F une solution du problème (1) et ψ la fonction de \mathbb{R} dans $\mathcal{M}_n(\mathbb{C})$ définie pour tout s réel par $\psi(s) = E_A(-s)F(s)$. Montrer que la fonction ψ est constante et en déduire que le problème (1) admet E_A pour unique solution.
 - e) Montrer que E_A est aussi l'unique solution du problème (2).

Désormais, on note pour tout s réel : $E_A(s) = e^{sA}$. La matrice $E_A(1) = e^A$ est appelée exponentielle de la matrice A. Cette notation et cette définition seront justifiées par les diverses propriétés étudiées dans la suite du problème.

- II.3 A l'aide de l'algorithme décrit dans les questions précédentes, déterminer explicitement les coefficients de e^{sM} , où M est la matrice donnée à la question I.1.
 - **II.4** Soit le problème de Cauchy dans $\mathcal{M}_{n,1}(\mathbb{C})$ donné par :

$$\forall s \in \mathbb{R} , \ Z'(s) = AZ(s) \ \ {
m et} \ \ Z(0) = Z_0 \ , \ Z_0 \in \mathcal{M}_{n,1}(\mathbb{C})$$

Montrer que sa solution est donnée par $Z(s) = e^{sA}Z_0$.

PARTIE III

- **III.1** Montrer que pour tout s réel, la matrice e^{sA} est un polynôme en A.
- **III.2** Soit A et B deux matrices de $\mathcal{M}_n(\mathbb{C})$ telles que AB = BA.
 - a) Montrer que pour tout s réel, A et e^{sB} commutent.
 - **b)** Montrer que pour tout s réel, e^{sA} et e^{sB} commutent.

c) Montrer que les fonctions

$$\mu: \mathbb{R} \longrightarrow \mathcal{M}_n(\mathbb{C}), s \longmapsto e^{s(A+B)} \text{ et } \nu: \mathbb{R} \longrightarrow \mathcal{M}_n(\mathbb{C}), s \longmapsto e^{sA}e^{sB}$$

vérifient une même équation différentielle et en déduire $e^{A+B} = e^A \times e^B$.

III.3 On considère les matrices $A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$.

Calculer e^A , e^B , e^{A+B} et $e^A e^B$. Quelle conclusion en tirez-vous?

III.4 Soit A dans $\mathcal{M}_n(\mathbb{C})$.

a) Montrer que si P est une matrice inversible de $\mathcal{M}_n(\mathbb{C})$, on a pour tout s réel :

$$e^{sP^{-1}AP} = P^{-1}e^{sA}P$$

b) Montrer que pour tout s réel : $e^{s({}^{t}A)} = {}^{t}(e^{sA})$.

PARTIE IV

On se place désormais dans l'espace vectoriel euclidien orienté \mathbb{R}^3 muni de son produit scalaire canonique. $\mathcal{B} = (e_1, e_2, e_3)$ est la base canonique de \mathbb{R}^3 et u = (a, b, c) est un vecteur unitaire de \mathbb{R}^3 . Soit x_0 un vecteur de \mathbb{R}^3 et x l'application de \mathbb{R} dans \mathbb{R}^3 solution du problème de Cauchy:

$$\forall s \in \mathbb{R} , \frac{dx}{ds} = u \wedge x \text{ et } x(0) = x_0$$
 (3)

IV.1 Si X(s) et X_0 sont les matrices colonnes respectives des coordonnées de x(s) et x_0 dans la base \mathcal{B} , montrer que le problème (3) s'écrit encore :

$$\forall s \in \mathbb{R} , \frac{dX}{ds} = AX \text{ et } X(0) = X_0$$
 (4)

où A est une matrice que l'on précisera.

IV.2 Déterminer le polynôme caractéristique de A et montrer que $A^3 = -A$.

IV.3 Montrer que $e^{sA} = I_3 + (\sin s)A + (1 - \cos s)A^2$ et donner l'expression de la solution du problème (4).

IV.4 On note f et g respectivement les endomorphismes de \mathbb{R}^3 canoniquement associés aux matrices A et e^{sA} .

a) Montrer qu'il existe une base orthonormale \mathcal{B}_0 telle que la matrice de f dans cette base soit :

$$B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

- **b**) Déterminer l'image par g de la base \mathcal{B}_0 , puis caractériser géométriquement l'endomorphisme g.
 - c) Calculer e^{sB} .

Fin de l'énoncé