Les calculatrices sont interdites

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il la signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

La partie II peut être traitée indépendamment des parties I et III.

PARTIE I

On considère la série entière $\sum_{i=1}^{+\infty} n^{-s} z^n$ de la variable complexe z, où s est un nombre réel donné.

- I.1 Déterminer le rayon de convergence de cette série entière.
- **I.2** Dans cette question, $z = e^{i\theta}$ désigne un nombre complexe de module 1.
- **I.2.1** Etudier la convergence de $\sum_{r=1}^{+\infty} n^{-s} z^r$ dans le cas où s>1 ainsi que dans le cas où $s \leq 0$.
- I.2.2 Dans le cas où $0 < s \le 1$, étudier la convergence de $\sum_{n=1}^{+\infty} n^{-s} z^n$ pour z = 1.

 I.2.3 Toujours dans le cas où $0 < s \le 1$, on suppose que $z \ne 1$. On pose $S_0 = 0$, et pour tout nombre entier $n \in \mathbb{N}^*$, $S_n = \sum_{k=1}^n z^k$.

Tournez la page SVP

Montrer que $|S_n| \leq M(\theta)$ pour tout $n \in \mathbb{N}$, avec $M(\theta) = \frac{1}{|\sin \frac{\theta}{2}|}$.

En écrivant z^k sous la forme $S_k - S_{k-1}$ pour tout nombre entier $k \in \mathbb{N}$, montrer que :

$$\forall n \in \mathbb{N}^*, \qquad \sum_{k=1}^n k^{-s} z^k = \sum_{k=1}^{n-1} S_k \left[k^{-s} - (k+1)^{-s} \right] + S_n n^{-s}.$$

Montrer que la série $\sum_{n=1}^{+\infty} S_n \left[n^{-s} - (n+1)^{-s} \right]$ est convergente et en déduire que la série $\sum_{n=1}^{+\infty} n^{-s} z^n$ est convergente.

Nous noterons dorénavant $\varphi(z,s)$ la somme $\sum_{n=1}^{+\infty} n^{-s} z^n$ pour tout couple $(z,s) \in \mathbb{C} \times \mathbb{R}$ pour lequel cette série est convergente.

- **I.3** On note I l'intervalle ouvert]-1,+1[de IR.
 - **I.3.1** Montrer que pour tout $(x,s) \in I \times \mathbb{R}$ on a $\varphi(x,s+1) = \int_0^x \frac{\varphi(t,s)}{t} dt$.
 - **I.3.2** Calculer $\varphi(x,0)$ et $\varphi(x,1)$ pour tout $x \in I$.
- **I.4** On suppose dans cette question que s > 1.
- I.4.1 Soit f_n la fonction définie sur $[0, +\infty[$ pour tout $n \in \mathbb{N}^*$ par $f_n(t) = e^{-nt}t^{s-1}$. Montrer que f_n est intégrable sur $[0, +\infty[$ et exprimer $\int_0^{+\infty} f_n(t)dt$ à l'aide de n, s et l'intégrale $\Gamma(s) = \int_0^{+\infty} e^{-t}t^{s-1}dt = \int_0^{+\infty} f_1(t)dt$.
- I.4.2 Soit z un nombre complexe de module inférieur ou égal à 1. Montrer que la série $\sum_{n=1}^{+\infty} z^n f_n(t)$ de fonctions de la variable réelle t est intégrable terme à terme sur $]0, +\infty[$.

En déduire que pour tout s > 1 et tout $z \in \mathbb{C}$ tel que $|z| \leq 1$, on a :

(1)
$$\varphi(z,s) = \frac{z}{\Gamma(s)} \int_{0}^{+\infty} \frac{t^{s-1}}{e^t - z} dt.$$

PARTIE II

Pour tout nombre réel s > 1, on pose $\zeta(s) = \varphi(1, s) = \sum_{n=1}^{+\infty} n^{-s}$.

- II.1 Montrer que ζ est une fonction indéfiniment dérivable de la variable s sur $]1, +\infty[$.
- II.2 Montrer que ζ est strictement décroissante sur $]1, +\infty[$.
- **II.3** Montrer que pour tout $s \in]1, +\infty[$ on a :

$$0 \le \zeta(s) - 1 \le \int_1^{+\infty} t^{-s} dt \le \zeta(s).$$

En déduire la limite de $\zeta(s)$ lorsque s tend vers $+\infty$.

Déterminer un équivalent de $\zeta(s)$ lorsque s tend vers 1 par valeurs supérieures à 1.

PARTIE III

- III.1 Soit g la fonction de la variable réelle x définie par :
 - (i) $g(x) = \left(\frac{\pi x}{2}\right)^2$ pour tout $x \in [0, 2\pi[$.
 - (ii) g est périodique de période 2π .
- III.1.1 Montrer que g est paire. Développer g en série de Fourier réelle. Etudier l'égalité entre g et la somme de sa série de Fourier.
- **III.1.2** Calculer les valeurs de $\zeta(2)$ et $\zeta(4)$, où ζ est la fonction définie dans la partie précédente.
- III.2 Soit θ un nombre réel. On note $R\varphi(\theta)$ la partie réelle de $\varphi(e^{i\theta}, 2)$, où φ est la fonction définie à la question I.2.
 - III.2.1 Exprimer $R\varphi(\theta)$ à l'aide de $g(\theta)$.
 - III.2.2 En déduire que pour tout $\theta \in \mathbb{R}$ on a :

$$\int_0^{+\infty} \frac{t(e^t \cos \theta - 1)}{e^{2t} - 2e^t \cos \theta + 1} dt = g(\theta) - \frac{\pi^2}{12}.$$

Tournez la page SVP

III.2.3 Déduire de ce qui précède la valeur des intégrales :

$$I_1 = \int_0^{+\infty} \frac{t}{e^t - 1} dt,$$
 $I_2 = \int_0^{+\infty} \frac{t}{e^t + 1} dt,$ $I_3 = \int_0^{+\infty} \frac{t}{\sinh t} dt.$

- III.3 Soit s un nombre réel strictement positif.
 - III.3.1 Montrer que pour tout $\theta \in \mathbb{R}$ on a les égalités :

$$\int_0^{+\infty} \frac{t^s(e^t \cos \theta - 1)}{e^{2t} - 2e^t \cos \theta + 1} dt = \Gamma(s+1) \sum_{n=1}^{+\infty} n^{-(s+1)} \cos n\theta,$$

$$\int_0^{+\infty} \frac{t^s e^t \sin \theta}{e^{2t} - 2e^t \cos \theta + 1} dt = \Gamma(s+1) \sum_{n=1}^{+\infty} n^{-(s+1)} \sin n\theta.$$

III.3.2 En déduire des expressions des intégrales :

$$I(s) = \int_0^{+\infty} \frac{t^s}{\operatorname{ch} t} dt, \qquad J(s) = \int_0^{+\infty} \frac{t^s}{\operatorname{sh} t} dt,$$

en fonction des sommes $S_1(s) = \sum_{k=0}^{+\infty} (2k+1)^{-(s+1)}$, $S_2(s) = \sum_{k=0}^{+\infty} (-1)^k (2k+1)^{-(s+1)}$ et de $\Gamma(s+1)$.

Fin de l'énoncé