MATHÉMATIQUES II

Dans tout le problème, n est un entier naturel supérieur ou égal à 1.

On considère un espace euclidien E de dimension n. On note (x|y) le produit scalaire de deux vecteurs x et y et $x \mapsto ||x||$ la norme associée.

Pour $u \in L(E)$, on note u^* son adjoint, χ_u son polynôme caractéristique et Sp(u) l'ensemble de ses valeurs propres. On note π_u le générateur de l'idéal des polynômes annulateurs de u dont le coefficient de plus haut degré est égal à 1 . π_u est appelé polynôme minimal de u .

L'endomorphisme u de E est dit antisymétrique lorsque $u^* = -u$.

On note, S(E), A(E) et O(E) les sous-ensembles de L(E) formés respectivement des endomorphismes symétriques, antisymétriques, orthogonaux.

Si F est un sous-espace de E stable par u , on note $u|_F$ l'endomorphisme de F induit par u .

On note $\mathscr{P}(E)$ l'ensemble des endomorphismes u de E tels que u^* soit un polynôme en u et $\mathscr{N}(E)$ l'ensemble des endomorphismes u de E qui commutent avec leur adjoint, donc :

$$\mathscr{P}(E) = \{ u \in L(E) / u^* \in \mathbb{R}[u] \}, \ \mathscr{N}(E) = \{ u \in L(E) / (u^* \circ u = u \circ u^*) \}.$$

Le but du problème est d'étudier et comparer les deux ensembles $\mathscr{P}(\mathtt{E})$ et $\mathscr{N}(\mathtt{E})$.

On note $\mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices carrées réelles de taille n et S_n , A_n et O_n les sous-ensembles de $\mathcal{M}_n(\mathbb{R})$ formés respectivement des matrices symétriques, antisymétriques, orthogonales.

Pour $A \in \mathcal{M}_n(\mathbb{R})$, on note χ_A son polynôme caractéristique et π_A son polynôme minimal, c'est-à-dire le polynôme minimal de l'endomorphisme de \mathbb{R}^n canoniquement associé à A. On note tA la transposée de A.

Deux matrices A et B sont dites orthogonalement semblables lorsqu'il existe $P \in O_n$ tel que $B = P^{-1}AP$.

On note \mathscr{P}_n l'ensemble des matrices A de $\mathscr{M}_n(\mathbb{R})$ telles que tA peut s'exprimer comme un polynôme en A, donc :

$$\mathcal{P}_n = \{A \in \mathcal{M}_n(\mathbb{R}) / {}^t A \in \mathbb{R}[A] \}$$
, et de manière analogue :

$$\mathcal{N}_n = \{ A \in \mathcal{M}_n(\mathbb{R}) / {}^t A A = A^t A \}$$

Les parties I et II sont indépendantes.

Filière PSI

Partie I - Généralités sur $\mathcal{P}(E)$ et \mathcal{P}_n

T.A -

- I.A.1) Soient A et B les deux matrices d'un même endomorphisme de E rapporté à deux bases orthonormales. Montrer que A et B sont orthogonalement semblables.
- I.A.2) Soit u un endomorphisme de E et A sa matrice sur \mathcal{B} , une base orthonormale de E. Établir un rapport entre l'appartenance de u à $\mathcal{P}(E)$ (resp. $\mathcal{N}(E)$) et l'appartenance de A à \mathcal{P}_n (resp. \mathcal{N}_n).

Dans la suite du problème, on pourra exploiter ce rapport pour répondre à certaines questions.

I.A.3) Montrer que $\mathscr{P}(E) \subset \mathscr{N}(E)$ et que $\mathscr{P}_n \subset \mathscr{N}_n$.

I.B -

- I.B.1) Vérifier que $S(E) \subset \mathscr{P}(E)$ et $A(E) \subset \mathscr{P}(E)$.
- I.B.2) Quelles sont les matrices triangulaires supérieures qui appartiennent à \mathcal{P}_n ?

En déduire que si $n \ge 2$, on a $\mathcal{P}(E) \ne L(E)$.

I.B.3) Soit $u \in L(E)$ admettant, sur une certaine base \mathcal{B} de E, une matrice triangulaire supérieure. Montrer qu'il existe une base orthonormale \mathcal{B}' de E, telle que les matrices de passage de \mathcal{B} à \mathcal{B}' et de \mathcal{B}' à \mathcal{B} soient triangulaires supérieures.

Montrer que la matrice de u dans \mathcal{B}' est triangulaire supérieure.

En déduire les éléments $u \in \mathcal{P}(E)$ qui sont trigonalisables.

I.B.4) On suppose que u est un automorphisme de E; montrer que u admet un polynôme annulateur P tel que $P(0) \neq 0$. En déduire que u^{-1} peut s'écrire comme un polynôme en u.

En déduire que $O(E) \subset \mathcal{P}(E)$.

I.C -

I.C.1) Montrer que si $A \in \mathscr{P}_n$ et $A \neq 0$, alors il existe un unique polynôme réel que l'on note P_A , tel que degré $(P_A) < \operatorname{degré}(\pi_A)$ et $P_A(A) = {}^t A$.

Si A est la matrice nulle, on convient que P_A est le polynôme nul.

Énoncer le résultat correspondant pour $u \in \mathcal{P}(E)$.

- I.C.2) Déterminer les matrices A de \mathscr{P}_n pour lesquelles P_A est un polynôme constant.
- I.C.3) Déterminer les matrices A de \mathscr{T}_n pour lesquelles P_A est du premier degré. On rappelle que toute matrice carrée s'écrit comme somme d'une matrice symétrique et d'une matrice antisymétrique.
- I.C.4) Soient *A* et *B* deux matrices orthogonalement semblables.

Montrer que si $A \in \mathcal{P}_n$ alors $B \in \mathcal{P}_n$ et $P_A = P_B$.

I.D - Décrire les éléments A de \mathscr{P}_2 et calculer les P_A correspondants.

I.E - Soit

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix} \text{ avec } A_1 \in \mathcal{P}_{n_1}, A_2 \in \mathcal{P}_{n_2}.$$

I.E.1) On suppose que π_{A_1} et π_{A_2} sont premiers entre eux. Montrer l'existence de deux polynômes U et V tels que :

$$P_{A_1} - (P_{A_1} - P_{A_2}) U \ \pi_{A_1} = P_{A_2} + (P_{A_1} - P_{A_2}) V \ \pi_{A_2} \,.$$

Calculer A^m pour m entier positif quelconque, puis P(A) pour $P = P_{A_1} - (P_{A_1} - P_{A_2})U\pi_{A_1}$.

En déduire que $A \in \mathscr{P}_{n_1+n_2}$.

I.E.2) Expliciter π_A en fonction de π_{A_1} et π_{A_2} .

Comment trouver P_A connaissant π_{A_1} , π_{A_2} , et le polynôme P défini par :

$$P = P_{A_1} - (P_{A_1} - P_{A_2})U\pi_{A_1}$$
?

I.F - Soit

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

Vérifier que $A \in \mathscr{P}_4$ et calculer P_A avec la méthode précédente.

Partie II - Étude de $\mathcal{N}(E)$ et \mathcal{N}_n

- **II.A** Montrer que si $u \in \mathcal{N}(E)$ et $P \in \mathbb{R}[X]$, alors $P(u) \in \mathcal{N}(E)$.
- **II.B** Soient $u \in \mathcal{N}(E)$ et $x \in E$. Montrer que $||u(x)||^2 = ||u^*(x)||^2$. En déduire que u et u^* ont le même noyau.

II.C - Soit m un entier, m > 0. On suppose donné un endomorphisme f antisymétrique inversible de l'espace \mathbb{R}^m muni de son produit scalaire canonique.

- II.C.1) Comparer les déterminants de f et f^* . En déduire que m est pair.
- II.C.2) On considère les applications n et g définies sur \mathbb{R}^m par $n(x) = \|x\|^2$ et $g(x) = \|f(x)\|^2$ et l'application

$$q: U = \mathbb{R}^m \setminus \{0\} \mapsto \mathbb{R}$$
 définie par $q(x) = \frac{\|f(x)\|^2}{\|x\|^2}$.

Montrer que n et g sont de classe C^1 sur \mathbb{R}^m et que leurs différentielles en x fixé sont les formes linéaires

$$h \mapsto 2(x|h)$$
 et $h \mapsto 2(f(x)|f(h))$.

Montrer que l'application q est de classe C^1 sur $\mathbb{R}^m \setminus \{0\}$ et déterminer sa différentielle en x, en calculant dq(x)(h) au moyen de produits scalaires et de normes.

On note $S = \{x \in U / ||x|| = 1\}$.

Montrer que l'ensemble des valeurs prises par q sur S coïncide avec l'ensemble des valeurs prises par q sur U. Montrer que la fonction q admet un maximum sur $\mathbb{R}^m \setminus \{0\}$ et que ce maximum est atteint en un point $x_0 \in S$.

Montrer que, pour tout h, on a $(f(x_0)|f(h)) = ||f(x_0)||^2 (x_0|h)$. En déduire que $\Pi = \text{Vect}(x_0, f(x_0))$ est un plan stable par f.

Donner une base orthonormale de Π et exprimer la matrice de $f|_{\Pi}$ relative à cette base.

II.C.3) Montrer qu'il existe une base orthonormale \mathscr{B} de \mathbb{R}^m telle que :

$$\mathcal{M}_{\mathcal{B}}(f) = \begin{bmatrix} \tau_1 & 0 & \dots & 0 \\ 0 & \tau_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \tau_{\frac{m}{2}} \end{bmatrix} \text{ avec } \tau_i = \begin{bmatrix} 0 & -b_i \\ b_i & 0 \end{bmatrix} \text{ et } b_i \neq 0 \text{ pour } i = 1, \dots, \frac{m}{2}.$$

- **II.D** Soit $u \in \mathcal{L}(E)$ et $E_1 \subset E$ un sous-espace stable par u et u^* . On note E_2 le supplémentaire orthogonal de E_1 .
- ${\rm II.D.1)} \quad {\rm Montrer\ que}\ E_2\ {\rm est\ stable\ par}\ u\ {\rm\ et}\ u^*\,.$
- II.D.2) Montrer que $(u|_{E_1})^* = u^*|_{E_1}$.
- II.D.3) Montrer que si, en outre, $u \in \mathcal{N}(E)$, alors $u|_{E_1} \in \mathcal{N}(E_1)$ et $u|_{E_2} \in \mathcal{N}(E_2)$.

Jusqu'à la fin de la partie II, u désigne un élément de $\mathcal{N}(E)$.

Filière PSI

II.E - Soient $\lambda \in \mathbb{R}$ et $x \in E$; montrer que $\|u(x) - \lambda x\|^2 = \|u^*(x) - \lambda x\|^2$. En déduire que u et u^* ont les mêmes sous-espaces propres et que ceux-ci sont en somme directe orthogonale.

Si λ est une valeur propre de u, on note $E_u(\lambda)$ le sous-espace propre associé. Soit F le supplémentaire orthogonal du sous-espace :

$$\bigoplus_{\lambda} \, E_u(\!\lambda\!) \,,$$
 où la somme porte sur l'ensemble des valeurs propres de u .

Montrer que F est stable par u et u^* . En considérant la restriction de u à F, montrer que la dimension de F ne peut être impaire. On notera $\dim F = 2p$.

II.F - On suppose que p est non nul. Soit $v \in \mathcal{N}(F)$. On pose

$$s = \frac{v + v^*}{2} \text{ et } \alpha = \frac{v - v^*}{2}.$$

II.F.1) Justifier que le polynôme caractéristique de s est scindé. On le note :

$$\chi_s(X) = \prod_{i=1}^k (\lambda_i - X)^{n_i}.$$

II.F.2) Montrer que $s \circ a = a \circ s$ et $s \circ v = v \circ s$.

Montrer qu'il existe une base orthonormale \mathscr{B}' de F telle que la matrice de v dans \mathscr{B}' soit diagonale par blocs :

$$\mathcal{M}_{\mathcal{B}'}(v) = \begin{bmatrix} M_1 & 0 & \dots & 0 \\ 0 & M_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & M_k \end{bmatrix}$$

avec, pour i=1,...,k , M_i de la forme $\lambda_i I_{n_i} + A_i$ où A_i est antisymétrique.

II.F.3) On suppose en outre que v n'admet aucune valeur propre réelle. Montrer que les A_i sont inversibles.

II.G - Montrer qu'il existe une base orthonormale ${\mathscr B}$ de E telle que :

$$\mathcal{M}_{\mathcal{B}}(u) = \begin{bmatrix} D & 0 & \dots & 0 \\ 0 & \tau_1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \tau_p \end{bmatrix} \text{ avec } D \text{ matrice diagonale, } \tau_i = \begin{bmatrix} a_i - b_i \\ b_i & a_i \end{bmatrix} \text{ et } b_i \neq 0$$

pour i = 1, ..., p.

- **II.H** Donner une caractérisation des matrices $A \in \mathcal{N}_n$.
- **II.I** Préciser la matrice obtenue dans II.G quand $u \in O(E)$.

Partie III - Relation entre \mathscr{P}_n et \mathscr{N}_n

III.A - Soit $P \in \mathbb{R}[X]$.

III.A.1) Soit

$$\Delta = \begin{bmatrix} M_1 & 0 & \dots & 0 \\ 0 & M_2 & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & M_k \end{bmatrix} \text{ une matrice réelle diagonale par blocs.}$$

Montrer que $P(\Delta) = {}^t \Delta$ si et seulement $P(M_i) = {}^t M_i$, pour i = 1, ..., k.

III.A.2) Donner les expressions de P_A , χ_A et π_A pour une matrice

$$A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \text{ où } b \neq 0.$$

 $A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \text{ où } b \neq 0.$ Montrer que $P(A) = {}^tA$ si et seulement si P(a+ib) = a-ib et P(a-ib) = a+ib.

Dans les questions qui suivent, on fixe $A \in \mathcal{N}_n$. D'après II.H, A est orthogonalement semblable à une matrice B telle que celle représentée dans II.G.

III.A.3) Montrer que $P(A) = {}^{t}A$ si et seulement si :

$$\begin{cases} P(\lambda) = \lambda & \text{pour toute valeur propre réelle } \lambda \text{ de } A \\ P(z) = \bar{z} & \text{pour toute racine complexe non réelle } z \text{ de } \chi_A \end{cases}.$$

III.A.4) Montrer qu'il existe $P \in \mathbb{C}[X]$, de degré minimal, vérifiant les conditions ci-dessus (sur $P(\lambda)$ et P(z)) et que ce polynôme est, en fait, à coefficients réels.

En déduire que $\mathcal{N}_n = \mathcal{P}_n$.

III.B - Montrer que le polynôme P trouvé dans III.A.4 est, en fait, P_A .

Retrouver, avec la méthode précédente, le polynôme P_A de la question I.F.

III.C - Dans cette question, on suppose note $C(\alpha_0, \alpha_1, ..., \alpha_{n-1}) \in \mathcal{M}_n(\mathbb{R})$ la matrice circulante

$$C(\alpha_0,\alpha_1,...,\alpha_{n-1}) = \begin{bmatrix} \alpha_0 & \alpha_1 & \alpha_2 & \dots & \alpha_{n-1} \\ \alpha_{n-1} & \alpha_0 & \alpha_1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \alpha_2 \\ \alpha_2 & \ddots & \ddots & \alpha_0 & \alpha_1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_{n-1} & \alpha_0 \end{bmatrix} \text{ et } J = C(0,1,0,...,0).$$

III.C.1) Montrer que $J \in \mathcal{P}_n$.

En déduire que toute matrice circulante appartient à \mathscr{P}_n .

III.C.2) À toute matrice circulante non nulle $A=C(\alpha_0,...,\alpha_{n-1})$, on associe les polynômes

$$P(X) = \sum_{i=0}^{n-1} \alpha_i X^i$$
 et $Q(X) = \alpha_0 + \sum_{i=1}^{n-1} \alpha_i X^{n-i}$.

Donner l'expression de π_J . Comparer Q et le reste de la division euclidienne de $P_A \circ P$ par π_J .

En déduire les étapes d'une méthode de calcul de P_A . Détailler le calcul pour A=C(1,1,0).

III.D - Soit $P(X) = a_0 + a_1 X + a_2 X^2$ avec $a_2 \neq 0$.

Montrer qu'il existe un entier $n \ge 3$ et une matrice $A \in \mathcal{P}_n$ telle que $P = P_A$ si et seulement si $(a_1 - 1)^2 - 4a_0a_2 \in [0, 4[$.

Indication: montrer que, si n et A existent, χ_A admet au moins une racine réelle et exactement deux racines complexes, conjuguées l'une de l'autre.

••• FIN •••