A 2002 Math MP 1

ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES. ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE, DES MINES DE NANCY, DES TÉLÉCOMMUNICATIONS DE BRETAGNE. ÉCOLE POLYTECHNIQUE (Filière TSI).

CONCOURS D'ADMISSION 2002

ÉPREUVE DE MATHÉMATIQUES PREMIÈRE ÉPREUVE Filière MP

(Durée de l'épreuve : 3 heures) (L'usage d'ordinateur ou de calculette est interdit).

Sujet mis à la disposition des concours : Cycle International, ENSTIM, ENSAE (Statistique), INT, TPE-EIVP.

Les candidats sont priés de mentionner de façon apparente sur la première page de la copie : MATHÉMATIQUES 1-Filière MP.

Cet énoncé comporte 5 pages de texte.

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Soit $(B_n)_{n\in\mathbb{N}}$ la suite des réels définis par les relations suivantes :

$$B_0 = 1$$
, $B_1 = 1$, pour tout entier naturel n supérieur ou égal à 1, $B_{n+1} = \sum_{n=0}^{n} C_n^p B_p$.

Les réels C_n^p sont les coefficients du binôme ; le nombre réel C_n^p , noté aussi $\begin{pmatrix} n \\ p \end{pmatrix}$, est égal au cardinal de l'ensemble des parties ayant p éléments d'un ensemble ayant n éléments.

PREMIÈRE PARTIE

I-1. Fonction E:

Soit E la fonction définie sur la droite réelle ${\bf R}$ par la relation suivante :

$$E(x) = \exp(\exp x) = e^{e^x}$$
.

a. Démontrer que la fonction E est développable en série entière sur la droite réelle \mathbf{R} .

b. Étant donné un entier naturel n, soit A_n le réel égal à la valeur de la dérivée n-ième de la fonction E en 0:

$$A_n = E^{(n)}(0).$$

Démontrer, en admettant les conventions habituelles $0^0 = 0! = 1$, la relation suivante :

$$A_n = \sum_{k=0}^{\infty} \frac{k^n}{k!} .$$

c. Établir, pour tout entier naturel n ($n \ge 0$), une relation de récurrence exprimant A_{n+1} en fonction de $A_0, A_1, ..., A_n$.

En déduire l'expression suivante du réel B_n en fonction de A_n :

$$B_n = \frac{1}{e} A_n.$$

I-2. Comparaison de sommes infinies :

Soit $(u_n)_{n\geq 1}$ une suite de réels strictement positifs $(u_n>0)$; on suppose que, pour tout entier naturel n, la série de terme général u_k k^n , k=1,2,..., est convergente. Soit U_n sa somme :

$$U_n = \sum_{k=1}^{\infty} u_k \, k^n.$$

a. Démontrer que, pour tout entier p donné supérieur ou égal à 1 $(p \ge 1)$, lorsque l'entier n croît vers l'infini, le réel U_n est équivalent au reste d'ordre p de la série défini par la relation : $R_{p,n} = \sum_{k=p}^{\infty} u_k \, k^n$; c'est-à-dire :

pour tout entier strictement positif
$$p$$
, $U_n \sim R_{p,n} = \sum_{k=p}^{\infty} u_k k^n$.

b. Étant données deux suites $(u_n)_{n\geq 1}$ et $(v_n)_{n\geq 1}$ de réels strictement positifs $(u_n>0, v_n>0)$, démontrer que, si les réels u_n et v_n sont équivalents lorsque l'entier n croît vers l'infini $(u_n\sim v_n)$, les deux suites de réels U_n , $n=1,2,\ldots$ et V_n , $n=1,2,\ldots$ définis par les relations suivantes :

$$U_n = \sum_{k=1}^{\infty} u_k k^n, \quad V_n = \sum_{k=1}^{\infty} v_k k^n,$$

sont équivalentes, lorsque l'entier *n* croît vers l'infini :

$$U_n \sim V_n$$
.

I-3 Fonction f_n :

Étant donné un entier n strictement positif $(n \ge 1)$, soit f_n la fonction définie sur la droite réelle **R** par la relation suivante :

$$f_n(x) = \begin{cases} 0, & \text{si } x \le 0, \\ e^x x^{-x+n-1/2}, & \text{si } x > 0. \end{cases}$$

Étant donné un entier n strictement positif $(n \ge 1)$, soit s_k le réel défini par la relation suivante :

$$s_k = f_n(k)$$
.

a. Étudier, pour un entier n donné, la convergence de la série de terme général s_k , k = 0, 1, 2, ...; soit S_n la somme de cette série :

$$S_n = \sum_{k=0}^{\infty} f_n(k).$$

b. Démontrer, lorsque l'entier *n* croît vers l'infini, l'équivalence suivante :

$$A_n \sim \frac{1}{\sqrt{2\pi}} \sum_{k=0}^{\infty} f_n(k).$$

DEUXIÈME PARTIE

Étant donné un réel λ strictement positif $(\lambda > 0)$, soit Φ_{λ} la fonction définie sur la demi-droite ouverte $0, \infty$, par la relation suivante :

$$\Phi_{\lambda}(x) = -x \ln x + x + \lambda \ln x.$$

II-1. Étude de la fonction Φ_{λ} :

- a. Déterminer des équivalents de $\Phi_{\lambda}(x)$ dans des voisinages de 0 et de l'infini.
- b. Déterminer les variations de la fonction Φ_{λ} sur la demi-droite ouverte $]0, \infty[$; établir en particulier l'existence d'un réel μ en lequel la fonction Φ_{λ} atteint son maximum.
- c. Soit φ la fonction qui, au réel λ , associe le réel μ . Démontrer que cette fonction φ , définie sur la demi-droite $]0, \infty[$, est continûment dérivable.

Pour tous réels x et λ strictement positifs, la relation ci-dessous, dans laquelle le réel μ est l'image par la fonction φ du réel λ ($\mu = \varphi(\lambda)$), est admise :

$$\Phi_{\lambda}\big(\mu\left(1+x\right)\big) = \Phi_{\lambda}(\mu) + (\mu-\lambda)(x-\ln(1+x)) - \mu\,x\,\ln(1+x).$$

II-2. Maximum de la fonction f_n :

- a. Démontrer que, pour tout entier n strictement positif, la fonction f_n admet un maximum en un unique point μ_n . Est-ce que la fonction f_n est continûment dérivable sur la droite réelle \mathbf{R} ?
 - b. Établir les propriétés suivantes vérifiées par les réels μ_n $(n \ge 1)$:
 - i. En admettant les inégalités suivantes,

$$0 < \frac{1}{2} < 2\ln 2 < \frac{3}{2},$$

démontrer que les réels μ_n , n=0,1,2,... vérifient les encadrements suivants :

$$1 < \mu_1 < 2 < \mu_2$$
; pour tout entier supérieur ou égal à $3 : \sqrt{n} < \mu_n < n$.

ii. le réel μ_n est négligeable devant l'entier n lorsque l'entier n croît vers l'infini :

$$\mu_n = o(n)$$
 lorsque $n \to \infty$.

iii. pour tout réel α compris strictement entre 0 et 1, le réel n^{α} est négligeable devant μ_n , lorsque l'entier n croît vers l'infini :

$$n^{\alpha} = o(\mu_n)$$
 lorsque $n \to \infty$.

TROISIÈME PARTIE

Étant donné un entier n strictement positif $(n \ge 1)$, soit g_n la fonction définie sur la droite réelle **R** par la relation suivante :

$$g_n(x) = \frac{1}{f_n(\mu_n)} f_n\left(\mu_n\left(1 + \frac{x}{\sqrt{n}}\right)\right).$$

III-1. Propriétés de la fonction g_n :

a. Vérifier, pour tout entier n strictement positif et tout réel x, la relation suivante :

$$f_n(x) = f_n(\mu_n) g_n\left(\frac{\sqrt{n}}{\mu_n}x - \sqrt{n}\right).$$

- b. Donner l'allure du graphe de la fonction g_n .
- c. Démontrer que la suite de fonctions $(g_n)_{n\geq 1}$ converge simplement vers une fonction g; expliciter cette fonction g.
- d. Démontrer qu'il existe un entier n_0 tel que, pour tout entier n supérieur ou égal à n_0 $(n \ge n_0)$ et tout réel x strictement supérieur à $-\sqrt{n}$ $(x > -\sqrt{n})$, la fonction g_n vérifie la majoration suivante :

$$g_n(x) \le \exp\left(-\frac{n}{2}\left(\frac{x}{\sqrt{n}} - \ln\left(1 + \frac{x}{\sqrt{n}}\right)\right)\right).$$

III-2 : Une majoration de la fonction g_n :

a. Soit *u* la fonction définie par la relation suivante :

$$u(x) = \frac{1}{x^2} (x - \ln(1+x)).$$

Démontrer que cette fonction se prolonge en une fonction dérivable sur la demi-droite ouverte $]-1, \infty[$; démontrer que cette fonction u est décroissante sur cet intervalle. Préciser son signe.

b. En déduire que, pour tout entier n supérieur ou égal à l'entier n_0 introduit à la question III-1.d, la fonction g_n , définie sur la droite réelle, vérifie les majorations suivantes :

$$g_n(x) \le \exp\left(-\frac{x^2}{4}\right)$$
, si $x \le 0$; $g_n(x) \le \exp\left(-\frac{1}{2}(x - \ln(1+x))\right)$, si $x \ge 0$.

QUATRIÈME PARTIE

Recherche d'un équivalent du réel B_n lorsque l'entier n croît indéfiniment.

IV-1. Intégrabilité de la fonction g_n :

Démontrer que, pour tout entier n strictement positif, la fonction g_n est intégrable sur la droite réelle. Soit I_n la valeur de son intégrale :

$$I_n = \int_{\mathbf{R}} g_n(x) \ dx.$$

Démontrer que la suite de réels $(I_n)_{n\geq 1}$ est convergente. Il est admis que la limite de cette suite est égale à $\sqrt{2\pi}$.

IV-2. Un encadrement de la somme S_n :

Étant donné un entier n strictement positif, d'après la question I-3.a, le réel S_n est la somme de la série de terme général $f_n(k)$, k = 0, 1, 2, ...

Déterminer des réels K_n et ε_n tels que la somme S_n soit encadrée de la manière suivante au moyen de l'intégrale I_n :

$$K_n(I_n - \epsilon_n) \leq S_n \leq K_n(I_n + \epsilon_n).$$

Les réels K_n et ϵ_n seront explicités en fonction de n, μ_n et de la fonction f_n . La suite ϵ_n tend vers 0.

Indication: Soit p l'entier égal à la partie entière du réel μ_n ; cet entier est défini par les inégalités ci-dessous:

$$p \le \mu_n .$$

Déterminer des encadrements des deux sommes S_n et S_n définies par les relations suivantes :

$$S_n' = \sum_{k=0}^p f_n(k)$$
 ; $S_n'' = \sum_{k=p+1}^{\infty} f_n(k)$.

IV-3. Un équivalent du réel B_n :

Déduire des résultats précédents un équivalent du réel B_n lorsque l'entier n croît vers l'infini.

FIN DU PROBLÈME